
Embedded Target for Infineon C166® Microcontrollers

 For Use with Real-Time Workshop ®

User’s Guide
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for Infineon C166 Microcontrollers User’s Guide
 COPYRIGHT 2002 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Infineon, C166, and MiniMon are registered trademarks or salesmarks of Infineon AG.

Tasking is a registered trademark of Altium Limited.

PHYTEC is a trademark of Phytec Technologie Holding AG.

ST10 is a trademark of the STMicroelectronics Group.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 2002 Online only Version 1.0 (Release 13+)
June 2004 Online only Version 1.1 (Release 14)

Contents
1
Getting Started

Introduction to the Embedded Target
for Infineon C166® Microcontrollers . 1-3

Feature Summary . 1-3

Prerequisites . 1-5

Using This Guide . 1-6

Installing the Embedded Target
for Infineon C166® Microcontrollers . 1-7

Hardware and Software Requirements 1-8
Host Platform . 1-8
Hardware Requirements . 1-8
Software Requirements . 1-9
Switching Between Hardware Variants 1-11

Setting Up and Verifying Your Installation 1-12
Troubleshooting: MiniMon Settings . 1-12

Setting Up Your Target Hardware . 1-14
Jumper Settings for the phyCore-167 Development Board . . 1-14

Setting Target Preferences . 1-15

Creating a Make Variables Reference File
for the Build Process . 1-17

Supported Blocks and Data Types . 1-20
i

ii Contents

Tutorial: Simple Example
2
Applications for C166® Microcontrollers

Introduction . 2-2

Tutorial: Creating a New Application 2-3
Before You Begin . 2-3
Example Model 1: c166_serial_transmit 2-3
Generating and Downloading Code . 2-6
Verifying Code Execution on the Target 2-9
Example 2: c166_serial_io . 2-10

Starting the Debugger
on Completion of the Build Process . 2-12

Fixed-Point Example Model: c166_fuelsys 2-14

Generating ASAP2 Files . 2-17

3
Integrating Your Own Device Drivers

Integrating Hand-Coded Device Drivers
with a Simulink Model . 3-2

Preparing Input and Output Signals
to the Device Driver Functions . 3-3

Calling the Device Driver Functions from c166_main.c . . . 3-6

Adding the I/O Driver Source to the List of Files to Build . 3-8

Tutorial: Using the Example Driver Functions 3-10

Custom Storage Class for C166® Microcontroller
4
Bit-Addressable Memory

Specifying C166® Microcontroller Bit-Addressable Memory 4-2

Using the Bitfield Example Model . 4-3

5
Execution Profiling

Overview of Execution Profiling . 5-2
The Execution Profiling Blocks . 5-3

Real Time Workshop Options for Execution Profiling 5-4
Real-Time Workshop Overrun Options 5-6

Multitasking Demo Model . 5-8
Running the Multitasking Demo . 5-9

6
Block Reference

The Embedded Target for Infineon C166® Microcontrollers
Block Library . 6-2

Using Block Reference Pages . 6-2

Blocks Organized by Library . 6-3
C166 Drivers Library . 6-4
Configuration Class Blocks . 6-8
iii

iv Contents
Blocks — Alphabetical List . 6-9

Index

1

Getting Started

This section contains the following topics:

Introduction to the Embedded Target
for Infineon C166® Microcontrollers
(p. 1-3)

Overview of the product and the use of the Embedded
Target for Infineon C166® Microcontrollers in the
development process.

Prerequisites (p. 1-5) What you need to know before using the Embedded
Target for Infineon C166® Microcontrollers.

Using This Guide (p. 1-6) Suggested path through this document to get you up and
running quickly with the Embedded Target for Infineon
C166® Microcontrollers.

Installing the Embedded Target for
Infineon C166® Microcontrollers
(p. 1-7)

Installation of the product.

Hardware and Software Requirements
(p. 1-8)

Hardware platforms supported by the product;
development tools (e.g. compilers, debuggers) required for
use with the product.

Setting Up and Verifying Your
Installation (p. 1-12)

Overview of setting up your development tools and
hardware to work with the Embedded Target for Infineon
C166® Microcontrollers, and verifying correct operation.

Setting Up Your Target Hardware
(p. 1-14)

Port connections and jumper settings.

Setting Target Preferences (p. 1-15) Configuring environmental settings and preferences
associated with the Embedded Target for Infineon C166®
Microcontrollers.

1 Getting Started

1-2
Creating a Make Variables Reference
File for the Build Process (p. 1-17)

This section explains the purpose of the Make Variables
Reference File file specified in the C166® Target
Preferences. You will need to understand these and
generate new files if you want to change the default
settings supplied with the Embedded Target for Infineon
C166® Microcontrollers.

Supported Blocks and Data Types
(p. 1-20)

Requirements and restrictions

Introduction to the Embedded Target for Infineon C166® Microcontrollers
Introduction to the Embedded Target
for Infineon C166® Microcontrollers

The Embedded Target for Infineon C166® Microcontrollers is an add-on
product for use with the Real-Time Workshop Embedded Coder. It provides a
set of tools for developing embedded applications for the C166® family of
processors. This includes derivatives such as Infineon C167 and XC16x, and ST
Microelectronics ST10 (http://www.us.st.com).

Used in conjunction with Simulink, Stateflow, and the Real-Time Workshop
Embedded Coder, the Embedded Target for Infineon C166® Microcontrollers
lets you

• Design and model your system and algorithms.

• Compile, download, run and debug generated code on the target hardware,
seamlessly integrating with industry-standard compilers and development
tools for the C166® microcontroller.

• Use rapid prototyping techniques to evaluate performance and validate
results obtained from generated code running on the target hardware.

• Deploy production code on the target hardware.

Feature Summary
• Automatic generation of ‘main’ program including singletasking or

preemptive multitasking scheduler

• Scheduler is configurable to allow temporary overruns

• Automated build procedure including starting debugger or download utility

• Support for integer, floating-point or fixed-point code

• Driver blocks for serial transmit and receive

• Driver blocks for CAN message transmit and receive

• Task execution time profiling

• Examples to show you how to integrate your own driver code

• Fully integrated with Tasking toolchain
1-3

1 Getting Started

1-4
• Enhanced HTML report generation provides analysis of RAM/ROM usage;
this is in addition to the standard HTML report generation that shows
optimization settings and hyperlinks to generated code files

• Support for CAN Calibration Protocol

Prerequisites
Prerequisites
This document assumes you are experienced with MATLAB®, Simulink®,
Real-Time Workshop®, and the Real-Time Workshop Embedded Coder.

Minimally, you should read the following from the “Basic Concepts and
Tutorials” section of the Real-Time Workshop documentation:

• “Basic Real-Time Workshop Concepts.” This section introduces general
concepts and terminology related to Real Time Workshop.

• “Quick Start Tutorials.” This section provides several hands-on exercises
that demonstrate the Real-Time Workshop user interface, code generation
and build process, and other essential features.

You should also familiarize yourself with the Real-Time Workshop Embedded
Coder documentation.

In addition, if you want to understand and use the device driver blocks in the
the Embedded Target for Infineon C166® Microcontrollers library, you should
have at least a basic understanding of the architecture of the C166®. The C166
Users Manual (or corresponding document for your C166® derivative
processor) is required reading. We recommend that you read the introduction
to the C166® microcontroller. You can find this document by searching the
Infineon web site for the C166® family of microcontrollers, at the following
URL:

http://www.infineon.com/
1-5

1 Getting Started

1-6
Using This Guide
We suggest the following path to get acquainted with the Embedded Target for
Infineon C166® Microcontrollers and gain hands-on experience with the
features most relevant to your interests:

• Read Chapter 1, “Getting Started” in its entirety, paying particular attention
to “Setting Up and Verifying Your Installation” on page 1-12.

• If you are interested in using the device driver blocks supplied with
Embedded Target for Infineon C166® Microcontrollers and in deploying
stand-alone, real-time applications on the C166®, read Chapter 2, “Tutorial:
Simple Example Applications for C166® Microcontrollers.” Work through
the “Tutorial: Creating a New Application” on page 2-3.

• Then, if you are interested in using Embedded Target for Infineon C166®
Microcontrollers for integrating automatically generated code with your own
hand-written device driver code, see “Integrating Hand-Coded Device
Drivers with a Simulink Model” on page 3–2. Work though the example
provided in “Tutorial: Using the Example Driver Functions” on page 3–10.

• See Chapter 4, “Custom Storage Class for C166® Microcontroller
Bit-Addressable Memory” to find out how to use Embedded Target for
Infineon C166® Microcontrollers to take advantage of C166®
bit-addressable memory. This can significantly reduce code size and increase
execution speed. There are examples provided in “Using the Bitfield
Example Model” on page 4–3.

• For in-depth information about the device drivers and other blocks supplied
with Embedded Target for Infineon C166® Microcontrollers, see Chapter 6,
“Block Reference.” It is particularly important to read “C166 Resource
Configuration” on page 6-16, as the C166 Resource Configuration block is
required to use the device driver blocks.

• To browse the demos available, select Start –> Simulink –> Embedded
Target for Infineon C166® Microcontrollers –> Demos, or at the command
line enter
demo simulink 'Embedded Target for Infineon C166fi
Microcontrollers'

We recommend you work through the tutorials in this User’s Guide with
step-by-step instructions for using and understanding these demos.

Installing the Embedded Target for Infineon C166® Microcontrollers
Installing the Embedded Target
for Infineon C166® Microcontrollers

Your platform-specific MATLAB Installation Guide provides all of the
information you need to install the Embedded Target for Infineon C166®
Microcontrollers.

Prior to installing the Embedded Target for Infineon C166® Microcontrollers,
you must obtain a License File or Personal License Password from The
MathWorks. The License File or Personal License Password identifies the
products you are permitted to install and use.

As the installation process proceeds, it displays a dialog where you can select
which products to install.
1-7

1 Getting Started

1-8
Hardware and Software Requirements

Host Platform
The Embedded Target for Infineon C166® Microcontrollers supports only the
PC platform: Windows 2000, NT and XP only.

You can see the system requirements for MATLAB online at

http://www.mathworks.com/products/system.shtml/Windows

Hardware Requirements
Embedded Target for Infineon C166® Microcontrollers may be used to
generate programs that can run on any development board or Electronic
Control Unit (ECU) that is based on the C166® microcontroller.

The Embedded Target for Infineon C166® Microcontrollers is supplied with
default configurations that have been tested on the following hardware:

• Phytec phyCORE-167 ST10F269

• Phytec phyCORE-167 C167CS

• Phytec kitCON-167 C167CR

You can switch easily between these configurations. For other hardware
variants you will need to change the default configuration settings. For details
see “Switching Between Hardware Variants” on page 1-11.

In this document, we assume that you are working with the Phytec
phyCORE-167CS development board, and we document specific settings and
procedures for use with the Phytec phyCORE-167CS board, in conjunction with
specific cross-development environments.

If you use a different development board, you may need to adapt these settings
and procedures for your development board.

Hardware and Software Requirements
Software Requirements

Required and Related MathWorks Products
The Embedded Target for Infineon C166® Microcontrollers requires these
products:

• MATLAB® 7.0 (Release 14)

• Simulink® 6.0 (Release 14)

• Real-Time Workshop® 6.0 (Release 14)

• Real-Time Workshop Embedded Coder 4.0 (Release 14)

Optional — if you wish to implement the CAN Calibration Protocol (for
example, for downloading without manual processor reset) by using the CAN
Calibration Protocol block, you also need

• Stateflow® 6.0(Release 14) and Stateflow Coder

The Fixed-Point Blockset is strongly recommended but not essential; it is
required for one of the demos (c166_fuelsys).

For more information about any of these products, see either

• The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

LINK to the Marketing Product page.

Supported Cross-Development Tools
In addition to the required MathWorks software, a supported
cross-development environment is required. The Embedded Target for
Infineon C166® Microcontrollers currently supports the cross-development
tools listed below:

• Tasking CrossView compiler and debugger toolchain (version 8.0)

• MiniMon freeware download and monitor utility (version 2.2.3)
1-9

1 Getting Started

1-1
Before using the Embedded Target for Infineon C166® Microcontrollers with
the above cross-development tools, please be sure to read and follow the
instructions in “Setting Up and Verifying Your Installation” on page 1-12.
0

Hardware and Software Requirements
Switching Between Hardware Variants
There are many different members of the C166® microcontroller family, e.g.
C167CS, ST10, XC167CI. For each of these processors, it is appropriate to use
different compiler switches and link libraries. Even if you are working with a
single processor variant, you may need to build for different memory
configurations for example depending on whether the application will run from
RAM or flash memory.

The Embedded Target for Infineon C166® Microcontrollers is supplied with
default configurations that have been tested on the following hardware:

• Phytec phyCORE-167 C167S

• Phytec phyCORE-167 C167S with application running in flash memory

• Phytec phyCORE-167 ST10F269

• Infineon Starter Kit for XC167CI

If your hardware variant is not on this list you will need to change the default
configuration settings. See “Creating a Make Variables Reference File for the
Build Process” on page 1-17.

When switching between target configurations, you should review all of your
Target Preferences and ensure that they are set appropriately for the new
configuration. It is only necessary to change the Target Preferences once and
the new settings will take effect for all subsequent builds.

Additionally, for each model that you build, you must check, and if necessary
change, the following settings in the C166 Resource Configuration block:

• System_frequency
• External_oscillator_frequency

To determine the correct value of these parameters, you should consult your
hardware documentation.

It is possible to make all the required changes programmatically: a convenience
function c166switchconfig is provided for this purpose. This function can be
run by double-clicking the block Switch Target Processor Variant inside any
of the demo models.
1-11

1 Getting Started

1-1
Setting Up and Verifying Your Installation
The next sections describe how to configure your development environment
(compiler, debugger, etc.) for use with the Embedded Target for Infineon
C166® Microcontrollers and verify correct operation. The initial configuration
steps are described in the following sections:

• “Setting Up Your Target Hardware” on page 1–14

• “Setting Target Preferences” on page 1–15

Install Tasking compiler and CrossView debugger by following the instructions
provided by Altium Limited.

If the CrossView connection to your target hardware requires a serial
connection, we recommend you install the Minimon download utility. By using
Minimon instead of CrossView to launch your application, the serial connection
will be available for other purposes, if required. If your CrossView connection
is via a debug interface (for example on XC16x hardware) then it is not
necessary to install Minimon.

You can obtain the MiniMon download utility for monitoring the serial
interface at this URL:

http://www.infineon.com

Be sure to install the 2.2.3 version. Earlier versions do not contain all the
required controller configurations.

Troubleshooting: MiniMon Settings
You must check that MiniMon has the correct target settings. Start Minimon,
then click Configure Hardware ()in the toolbar (or select Target –>
Configuration...) and make sure the settings are as in the following
illustration.

This configuration has been verified with both a phyCORE C167CS board and
a Phytec kc167 (C167CR).

It may be necessary to change the Controller type depending on your
hardware. For example, if you are using a phyCORE-167 with ST10F269
processor you should select Controller type C164CH. This works because both
these controllers share the same bootstrap loader identification byte.
2

Setting Up and Verifying Your Installation
1-13

1 Getting Started

1-1
Setting Up Your Target Hardware
In this document, we assume that you are working with the phyCORE-167CS
module with HD200 development board. This section describes the required
connections and jumper settings for the board. If you are using different target
hardware, you should consult the hardware documentation.

After setting up your board, you must configure target settings associated with
the Embedded Target for Infineon C166® Microcontrollers, as described in the
next section.

Connect the supplied power cable to the board, and use the serial cable to
connect the serial port P1 on the board to the serial port of your PC.

Jumper Settings for the phyCore-167 Development
Board

1 Configure jumpers as detailed in the instructions found in the phyCORE
QuickStart documentation. Note that we have found these settings to be
markedly different to the configuration fresh out of the box.

2 It is useful if the board starts up in bootloader rather than execution mode.
There is one jumper setting that needs to be changed to achieve this: close
pins 1 and 2 on JP10. This is optional; if you do not close this jumper, then
when you download to the target you need to keep the Boot switch depressed
while pressing the Reset button.
4

Setting Target Preferences
Setting Target Preferences
This section describes configuration settings associated with the Embedded
Target for Infineon C166® Microcontrollers. These settings, which persist
across MATLAB sessions and different models, are referred to as target
preferences. Target preferences let you specify the location of your
cross-compiler and other parameters affecting the generation, building, and
downloading of code:

• Start the Target Preferences Setup GUI by selecting Start –> Simulink –>
Embedded Target for Infineon C166® Microcontrollers –> C166 Target
Preferences.

Here you can edit the settings for your cross-development environment:

• BootstrapLoaderExe specifies the path to your download utility (MiniMon).

• MakeVariablesReferenceFile specifies a makefile that is used as a
reference for building applications created with Embedded Target for
Infineon C166® Microcontrollers. For further details on creating and using
this file, see “Make Variables Reference File” on page 1–17.

• TargetCompilerPath specifies the path to your compiler (Tasking)

• TargetDebuggerExe specifies the path to your debugger executable
(CrossView)

• TaskingCfgOnChip specifies the name of a CrossView configuration file that
will be used to start CrossView when the build action is set to
1-15

1 Getting Started

1-1
Download_and_run_with_debugger. Consult the CrossView documentation
“C166/ST10 v7.5 CROSSVIEW PRO DEBUGGER USER’S GUIDE” for
further details.

• TaskingCfgSimulator specifies the name of a CrossView configuration file
that will be used to start CrossView when the build action is set to
"Run_with_simulator".

• TaskingRegisterDefs specifies an include file that may be used in the
automatically generated C source code; this file should be located in the
include sub-directory of your Tasking compiler installation. This target
preference allows you to select a register definitions file that is appropriate
for your target hardware and consistent with the settings in the Make
Variables Reference File. The file contains definitions of all the special
function registers etc., that may be dependent upon your target hardware.
See the Tasking User Guide “C166/ST10 v7.5 C CROSS–COMPILER
USER’S GUIDE” for further details.

You must check these paths are correct for your machine. You may need to
localize these paths to suit your PC. You can edit a path by clicking on it. The
drive designated in the path must be either an actual hard drive on your PC,
or a mapped drive. Do not use a Universal Naming Convention (UNC).

See the next section, “Creating a Make Variables Reference File for the Build
Process” on page 1-17 for more information on using the configuration files
specified in the target preferences.
6

Creating a Make Variables Reference File for the Build Process
Creating a Make Variables Reference File
for the Build Process

The default settings provided with Embedded Target for Infineon C166®
Microcontrollers allow you to build an application using the C166®
microcontroller small memory model and with registers configured
appropriately for a number of evaluation boards, including the Phytec
phyCORE-C167CS, and the Phytec KC167.

You can change the default settings by supplying your own configuration files
in the C166 Target Preferences Setup dialog. The following information
explains the purpose of the Make Variables Reference File and how to create a
new one for different memory models or hardware variants.

Make Variables Reference File
The target preference MakeVariablesReferenceFile contains make variables
that are copied and used by the Embedded Target when building a model. The
Make Variables Reference File contains information that is specific to the
C166® hardware variant as well as build settings such as the memory
configuration.

The Make Variables Reference Files provided with Embedded Target for
Infineon C166® Microcontrollers allow you to build an application for selected
evaluation boards such as the Phytec phyCORE-C167CS.

If none of the supplied Make Variables Reference Files are not suitable for your
hardware configuration, you must create a new one. The easiest way to do this
is by creating a new project using the Tasking EDE, as described below.

Content of the Make Variables Reference File
The target preference MakeVariablesReferenceFile allows a makefile to be
specified that is used as a reference for obtaining build configuration settings.
The specified makefile is not used directly, rather it is examined and used to
provide the following information:

• OPT_CC is a make variable containing flags used during the compile stage of
the build process.

• OPT_MPP is a make variable containing flags used during the macro
pre-processor stage of the build process
1-17

1 Getting Started

1-1
• OPT_LC is a make variable containing flags used during the link/locate stage
of the build process

• start.asm is the startup code that will be copied to the build directory then
compiled and linked with the rest of the application

• filename.inc is a file referenced within OPT_MPP that contains definitions
used by the macro pre-processor. The content of this file is copied to the build
directory.

• Filename.ilo is a file referenced within OPT_LCC that contains extra
instructions for the linker/locator. The content of this file is copied to the
build directory.

Creating a New Make Variables Reference File using the Tasking EDE
To create a new Tasking EDE project along with the required Make Variables
Reference File follow these steps.

1 Create a new folder for the project.

2 Copy source files for a sample application, e.g.
matlabroot\toolbox\rtw\targets\c166\tasking\make\phyCORE_C167CS_v80\main.c

to this new directory.

3 Open the Tasking EDE.

4 Right-click on the root of the project tree and select Add New Project, and
create a new project in the folder created for that purpose.

5 Click the '+' icon to scan the source file into the new project.

6 In the project tree, right-click on the new project and set it as the current
project.

7 Under the menu item Project –> Project Options you should configure the
required settings for your hardware environment. This should include

a Set the CPU type (and allow EDE to set registers accordingly).

b In the Linker/Locator section, check the option to generate Intel Hex
files.
8

Creating a Make Variables Reference File for the Build Process
c In the CrossView Pro/Execution Environment select the required
evaluation board and confirm that startup registers should be set to
default values for this execution environment; this should ensure that
X-Bus peripherals such CAN are enabled on hardware where they are
available.

8 Right-click on the project and select Build. Check that the project builds
successfully and that a new Make Variables Reference File with .mak file
extension has been created in the project directory.

9 It is a good idea to test that you can run the application main.c on your
hardware; to do this you should run CrossView and download the compiled
application. You may wish to provide your own sample application instead
of main.c, or make a modification to main.c in test specific features of your
hardware.

10 The new .mak file is now ready for use with Embedded Target for Infineon
C166® Microcontrollers; to use it, you must specify the path to this new file
in your target preferences.

Consult the Tasking User Guides “C166/ST10 v8.0 C CROSS-COMPILER
USER'S GUIDE” and “C166/ST10 v8.0 CROSS-ASSEMBLER,
LINKER/LOCATOR, UTILITIES USER'S GUIDE” for further details.

Tasking EDE is the best place to start if you want to configure the startup code,
but you can also try using the Infineon Digital Application Engineer DAvE.
The freeware DAvE is also very useful for developing device drivers — see
“Integrating Hand-Coded Device Drivers with a Simulink Model” on page 3–2.
1-19

1 Getting Started

1-2
Supported Blocks and Data Types
Embedded Target for Infineon C166® Microcontrollers supports the same
blocks and data types as Real-Time Workshop Embedded Coder.

Note however

1 You should not use IEEE values Inf or NaN in your model: these are not
supported and will result in an error.

2 Floating point support is implemented in the software; if speed and ROM
usage are of concern you should select the option for integer code and avoid
the use of floating-point values in your model. This is detailed in step 9 of
“Tutorial: Using the Example Driver Functions” on page 3-10.
0

2

Tutorial: Simple Example
Applications for C166®
Microcontrollers

This section includes the following topics:

Introduction (p. 2-2) An overview of the Embedded Target for Infineon C166®
Microcontrollers real-time target, other components
required to generate stand-alone real-time applications,
and the process of deploying generated code on target
hardware.

Tutorial: Creating a New Application
(p. 2-3)

A hands-on exercise in building two simple applications
from demo models, including downloading and executing
generated code on a target board.

Starting the Debugger on Completion
of the Build Process (p. 2-12)

This exercise shows you how to generate code and
commence debugging automatically as part of the build
process. Depending on your debugger, you can debug the
application either on-chip or on a hardware simulator.

Generating ASAP2 Files (p. 2-17) How to generate ASAP2 files for your models.

2 Tutorial: Simple Example Applications for C166® Microcontrollers

2-2
Introduction
This section describes how to use two example models to generate, download
and run stand-alone real-time applications for the C166® microcontroller. The
components required to generate stand-alone code are

• The Embedded Target for Infineon C166® Microcontrollers real-time target

• The example models provided: c166_serial_transmit.mdl and
c166_serial_io.mdl

• The Tasking C Compiler and Tasking Cross View debugger for compiling and
downloading generated code to the target hardware

As an alternative to Cross View, you can use the Minimon utility for
downloading an application to your target hardware.

Using these, you can build the complete applications. You do not need to
hand-write any C code to integrate the generated code into a final application.

The tutorial “Tutorial: Creating a New Application” on page 2-3 uses two
blocks from the Embedded Target for Infineon C166® Microcontrollers library.
For complete information on the Embedded Target for Infineon C166®
Microcontrollers library blocks, see Chapter 6, “Block Reference.”

Tutorial: Creating a New Application
Tutorial: Creating a New Application
In this tutorial, you will build stand-alone real-time applications from models
incorporating blocks from the Embedded Target for Infineon C166®
Microcontrollers library. We assume that you are already familiar with
Simulink and with the Real-Time Workshop code generation and build process.

In the following sections, you will

• Examine two models

• Generate code from the models

• Download and run the code automatically as part of the build process

• Use MiniMon to monitor the code executing on the target

• Use the Cross View debugger to run a model on the C166 Simulator or debug
on-chip

Before You Begin
This tutorial requires the following specific hardware and software in addition
to the Embedded Target for Infineon C166® Microcontrollers:

• Phytec phyCORE-167CS development board, connected via serial port to
your PC

• Tasking C Compiler and Cross View debugger

• MiniMon download utility

You must make sure the target preferences have been set correctly. See
“Setting Target Preferences” on page 1-15.

Note Make sure the default.ini file in the MiniMon directory is not read
only. This can cause errors.

Example Model 1: c166_serial_transmit
In this tutorial you will start with a simple example model,
c166_serial_transmit, from the directory
matlabroot/toolbox/rtw/targets/c166/c166demos.
2-3

2 Tutorial: Simple Example Applications for C166® Microcontrollers

2-4
This directory is on the default MATLAB path:

1 Open the model by typing c166_serial_transmit at the command line.

This example shows the tutorial model c166_serial_transmit at the root
level.

The model contains a C166 Resource Configuration object. When building a
model with driver blocks from the Embedded Target for Infineon C166®
Microcontrollers library, you must always place a C166 Resource
Configuration object into the model (or the subsystem from which you want to
generate code) first.

The purpose of the C166 Resource Configuration object is to provide
information to other blocks in the model. Unlike conventional blocks, the C166
Resource Configuration object is not connected to other blocks via input or
output ports. Instead, driver blocks (such as the ASC0 Serial Transmit block in
the example model) query the C166 Resource Configuration object for required
information.

For example, a driver block may need to find the system clock speed that is
configured in the C166 Resource Configuration object. The C166®
microcontroller has a number of clocked subsystems; to generate correct code,
driver blocks need to know the speeds at which the these clock busses will run.

The C166 Resource Configuration window lets you examine and edit the C166
Resource Configuration settings.

2 To open the C166 Resource Configuration window, double-click on the C166
Resource Configuration icon. The picture following shows the C166
Resource Configuration window for the c166_serial_transmit model.

Tutorial: Creating a New Application
In this tutorial, you will use the default C166 Resource Configuration settings.

Note If hardware is running at a system frequency other than 20MHz you
must change this parameter appropriately.

Otherwise, observe, but do not change, the parameters in the C166 Resource
Configuration window. By default the c166drivers configuration is selected.
This shows parameters for the C166® microcontroller CPU in the System
Configuration pane on the right.

You can see the settings for the serial driver block by clicking on the
c166drivers/Asynchronous/Synchronous Serial Interface option in the
Active Configurations pane. These settings are shown in the following
illustration.
2-5

2 Tutorial: Simple Example Applications for C166® Microcontrollers

2-6
The settings appear in the RTW Configuration pane on the right. Do not edit
any of these parameters for this tutorial. To learn more about the C166
Resource Configuration object, see “C166 Resource Configuration” on
page 6-16.

Close the C166 Resource Configuration window before proceeding.

Generating and Downloading Code
To generate code for the model:

1 Select Simulation –> Configuration Parameters.

The Configuration Parameters dialog opens.

Tutorial: Creating a New Application
2 Select the Real-Time Workshop pane, as shown below.
2-7

2 Tutorial: Simple Example Applications for C166® Microcontrollers

2-8
3 Select the C166 Options tab (use the buttons at top right to scroll through
the tabs).

Make sure that the Build action is Download_and_run. When you generate
code for this model, it will automatically start a download utility program
and load the application onto C166® microcontroller hardware over a serial
connection. The code will then begin execution on the target.

Note Do not attempt to build code in directories with spaces in the name.
This may cause the build to fail as we cannot guarantee that third party
toolchains will accept this.

Tutorial: Creating a New Application
4 Click Build.

Note that you could have gone straight to building the model by selecting
Tools –> Real-Time Workshop –> Build Model or using the short cut
Ctrl+B.

Watch the progress messages in the command window as code is generated.
When MiniMon is started, a dialog appears asking you to reset your
hardware.

5 Press the Reset button on your phyCORE-167CS board or cycle the power,
and then click OK.

You can see progress messages in the MiniMon window as it connects and
then downloads to the target. MiniMon will then disappear and the code will
begin executing on the target.

Verifying Code Execution on the Target

1 Start MiniMon (select Start –> Programs –> MiniMon –> MiniMon in
Windows, or navigate to MiniMon.exe and double-click).

2 Watch the model output in the MiniMon window. When the application is
running it sends the text “Hello World” plus a carriage return plus a linefeed
over the serial interface.
2-9

2 Tutorial: Simple Example Applications for C166® Microcontrollers

2-1
Example 2: c166_serial_io
We provide another example model which demonstrates how to use both serial
transmit and receive blocks for the C166® microcontroller. You could use these
blocks in this way with your own Simulink models.

1 Open the model by typing c166_serial_io at the command line.

2 Press Ctrl+B or select Tools –> Real-Time Workshop –> Build Model.

Watch the progress messages as code is generated from the model and
MiniMon is automatically started to download the code to the target over the
serial connection. The MiniMon dialog appears asking you to reset your
hardware.

3 Press the Reset button on your phyCORE-167CS board or cycle the power,
and then click OK.

You can see progress messages in the MiniMon window as it connects and
then downloads to the target. MiniMon will then disappear and the code will
begin executing on the target.

You can restart MiniMon to monitor the serial interface.
0

Tutorial: Creating a New Application
Verifying Code Execution on the Target

1 Start MiniMon (select Start –>Programs –>MiniMon –> MiniMon in
Windows, or navigate to MiniMon.exe and double-click).

2 Watch the model output in the MiniMon window. When the application is
running, it generates a sequence of 16 bit numbers, converts them to ASCII
characters, and transmits them over the serial interface.

3 If you enter the character 'r' in the MiniMon command line field, the
application will restart at the beginning of the sequence. Examine the model
to see how this works: the serial receive block passes the restart command
though to the Generate Fibonacci Sequence subsystem. This subsystem
checks for the restart command.
2-11

2 Tutorial: Simple Example Applications for C166® Microcontrollers

2-1
Starting the Debugger
on Completion of the Build Process

As an alternative to downloading with MiniMon at the end of the build process,
you can start your debugger. Depending on the features provided by your
debugger, you can debug the application either on-chip or on a hardware
simulator.

For this example you will use another demo model, c166_user_io.mdl. This
model is designed to show you how to integrate your own hand-coded device
drivers with automatically generated code using Embedded Target for Infineon
C166® Microcontrollers. This model is covered in detail in Chapter 3,
“Integrating Your Own Device Drivers.” You will use it as an example here
because you will typically need to use the debugger in cases where you are
integrating your own code.

Also, note that running the debugger on-chip over the serial interface will
conflict with the serial transmit and receive blocks. The c166_user_io model
does not use serial blocks, so this avoids serial conflicts for this example. If you
need to debug an application that includes the serial transmit and receive
blocks, you must run the debugger using a hardware simulator; alternatively,
it may be possible to run your debugger on-chip without using the serial
interface, for example if debugging over CAN or JTAG is available:

1 Open the model c166_user_io.mdl.

2 Select Simulation –> Configuration Parameters.

3 Select the Real-Time Workshop tab and click the C166 Options tab (use
the top right buttons to scroll through the tabs).
2

Starting the Debugger on Completion of the Build Process
4 Select the Build action Run_with_simulator or
Download_and_run_with_debugger.

5 Before generating code, check that your target preferences related to the
debugger are correctly configured. See “Setting Target Preferences” on page
1–15.

6 Click OK.

7 Right click on the controller subsystem and select Real-Time Workshop
–> Build Subsystem.

8 Click Build in the following dialog.

Watch the progress messages in the command window as code is generated.
At the end of the build process your debugger will be launched automatically
with the application ready to run. You may now debug the application.
2-13

2 Tutorial: Simple Example Applications for C166® Microcontrollers

2-1
Note If your model contains a serial transmit or receive block, it is not
possible to perform on-chip debugging over the same serial interface.
Attempting to use the debugger in this case will cause an error.

Fixed-Point Example Model: c166_fuelsys
This demo model was derived from the demo fuelsys.mdl. The floating point
control algorithm from this original model has been converted to fixed point in
order to allow efficient code generation for the Infineon C166® microcontroller.
This demo starts the debugger in simulation mode rather than on-chip.

Note this demo requires Stateflow®, Stateflow Coder and the Fixed-Point
Blockset.

The complete model includes a plant simulation as well as a fixed point
implementation of the control algorithm. When you generate code for this
example, be sure to generate code for the control algorithm sub-system only:

1 Open the model c166_fuelsys.mdl.
4

Starting the Debugger on Completion of the Build Process
2 Right-click on the block fuel rate controller

3 From the pop-up menu, select Real Time Workshop –> Build Subsystem.

4 On the following dialog click Build.

When code generation is complete, the Code Generation Report appears in your
Help browser. Here you can review the RAM and ROM requirements of the
model. To do this, left-click on the link Code profile report in the left list.
For comparison, you may want to build the original floating point version of the
fuelsys control algorithm: you should find that using the fixed point
implementation results in a considerable reduction in both RAM and ROM.

Note that in the fixed point version of the fuelsys model, RAM and ROM
requirements have been reduced by:
2-15

2 Tutorial: Simple Example Applications for C166® Microcontrollers

2-1
• Selecting in-line parameters (on the Optimization tab of the Configuration
Parameters dialog)

• Using C166 bit-addressable memory for some signals with data type boolean
(see Chapter 4, “Custom Storage Class for C166® Microcontroller
Bit-Addressable Memory” for a detailed example)

• Replacing the reference to time, t, inside the Stateflow chart with a counter
(this is necessary in order to create integer only code)

• Skipping the index search. The variable press is used in several lookup
tables; because the values in this vector are evenly spaced the generated code
is optimized by skipping the index search; to ensure that the conversion to
fixed point does not affect this optimization, the variable press must be
replaced by c166_fixpt_evenspace_cleanup(press,sfix(16),2^-14); this
function makes an adjustment to the input values to ensure that they will
still be evenly spaced after conversion to fixed point.

• Switching off the option Saturate on integer overflow for all Sum, Product,
Switch and Look-Up Table blocks inside the fuel rate controller
subsystem. This is a check-box option (you must click Show additional
parameters to see it).

Further reductions in RAM and ROM are possible by changing the
lookup-method in some or all of the look-up tables in this model. For example,
by selecting Use input below instead of Interpolation-Use End Values a
significant reduction in memory requirement is possible; this further
optimization should only be considered if the degradation in performance is
deemed to be acceptable.

The example model c166_bitfields.mdl is also configured to launch the
debugger at the end of the build. See “Using the Bitfield Example Model” on
page 4-3 for details.
6

Generating ASAP2 Files
Generating ASAP2 Files
ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). ASAP2 is a
standard description for data measurement, calibration, and diagnostic
systems. The Embedded Target for Infineon C166® Microcontrollers lets you
export an ASAP2 file containing information about your model during the code
generation process. See also “Compatibility with Calibration Packages” on
page 6-32.

Before you begin generating ASAP2 files with the Embedded Target for
Infineon C166® Microcontrollers, you should read the “Generating ASAP2
Files” section of the Real-Time Workshop Embedded Coder documentation.
That section describes how to define the signal and parameter information
required by the ASAP2 file generation process.

Select the ASAP2 option before the build process as follows:

1 Select Simulation –> Configuration Parameters.

The Configuration Parameters dialog appears.

2 Select the Real-Time Workshop tab.

3 Select the Interface tab (use the buttons at top right to scroll through the
tabs).

4 Select the ASAP2 option from the Interface drop-down menu, in the Data
exchange frame, as shown following.
2-17

2 Tutorial: Simple Example Applications for C166® Microcontrollers

2-1
5 Click Apply.

As part of the build process, an ASAM compliant ASAP2 data definition file
will be created for the generated C code.

Note that standard Real-Time Workshop ASAP2 file generation does not
include the memory address attributes in the generated file. Instead it leaves
a placeholder that must be replaced with the actual address by post processing
the generated file.

Embedded Target for Infineon C166® Microcontrollers performs this post
processing for you. To do this it first extracts the memory address information
from the map file generated during the link process. Secondly, it replaces the
placeholders in the ASAP2 file with the actual memory addresses. This post
processing is performed automatically and requires no additional input from
you.
8

3

Integrating Your Own
Device Drivers

This section includes the following topics:

Integrating Hand-Coded Device
Drivers with a Simulink Model (p. 3-2)

Overview of the steps required to integrate your device
drivers with a Simulink model

Preparing Input and Output Signals to
the Device Driver Functions (p. 3-3)

How to structure your model’s inputs and outputs using
the demo c166_user_io.mdl as an example

Calling the Device Driver Functions
from c166_main.c (p. 3-6)

Real-Time Workshop settings to call your hand-coded
device driver functions

Adding the I/O Driver Source to the
List of Files to Build (p. 3-8)

How to customize the Real-Time Workshop make
command to integrate your device driver code

Tutorial: Using the Example Driver
Functions (p. 3-10)

A tutorial to show you the example driver functions and
how they are integrated with Embedded Target for
Infineon C166® Microcontrollers. This includes
generating, downloading and running code from the
controller subsystem of the c166_user_io.mdl demo
model.

3 Integrating Your Own Device Drivers

3-2
Integrating Hand-Coded Device Drivers
with a Simulink Model

Embedded Target for Infineon C166® Microcontrollers has a limited set of I/O
device driver blocks. This means that for most applications, it will be necessary
to write some device driver code by hand.

The approach described here requires the following steps:

1 Identify the model inputs/outputs that must be read from/written to device
driver functions.

2 Set the data type and storage class for each input or output signal so that it
is compatible with your device driver code.

3 Use the hooks provided in the automatically generated c166_main.c to call
your device driver initialization, input and output functions.

4 Add your device driver source code to the list of files that must be included
in the build process.

Each of these steps is described in the following sections. An example model is
provided: c166_user_io.mdl.

An alternative approach is to create Simulink I/O blocks that automatically
generate the device driver code. This approach may be worth considering if you
will frequently need to reconfigure the I/O behavior. If you want to take this
alternative approach, you should consult the documentation on S-functions
and TLC.

A very useful tool for creating C166 device drivers is the freeware Digital
Application Engineer DAvE from Infineon. You can find this at the following
URL:

http://www.infineon.de/dave

Using this package along with the hardware User’s Manual will greatly ease
the task of developing your own device driver code.

Preparing Input and Output Signals to the Device Driver Functions
Preparing Input and Output Signals
to the Device Driver Functions

We recommend you structure your model similarly to c166_user_io.mdl. Place
the control algorithm that will be targeted onto the C166® microcontroller
hardware in a separate subsystem. Prior to generating code, you can run this
model in closed-loop simulation; this allows you to validate the correct behavior
of your control algorithm before running it in real time.

When structuring your model in this way, you should make sure that all the
input and output signals to the control algorithm are channeled through
top-level input or output ports in the control algorithm subsystem.

By default, when you generate code for the control algorithm subsystem, Real
Time Workshop will choose variable names and data structures for each of the
top level input and output signals. However, in this case you must ensure that
the variables are global, and that their names and data structures match those
that are required by the hand-written device driver functions.

The example model c166_user_io illustrates some alternative ways to achieve
this. The simplest method is to

1 Select one of the signals in your model connected to a top level output port
in the control algorithm subsystem. As an example, open the demo
c166_user_io.mdl, open the controller subsystem, and click on the
output_PWM0 signal.
3-3

3 Integrating Your Own Device Drivers

3-4
2 Select the menu item Edit –> Signal Properties.

The Signal Properties dialog appears, as in the example following.

3 Enter the required variable name for your signal in the Signal name edit
box. This must match the variable name required by your hand written
device driver functions.

4 Click the Real-Time Workshop tab and select ExportedGlobal from the
RTW storage class drop-down menu.

When you generate code for this model, Real-Time Workshop will use the
variable name that you have specified and will create an 'extern' declaration
in the model header file. By using a #include directive to include this model
header file in your device driver source code it is possible for the device driver
functions to read or write this variable that is defined in the Real-Time
Workshop generated code.

A more sophisticated approach is to use custom storage classes. By using
custom storage classes you can collect a number of input or output variables
together into a C struct, resulting in more readable code. The LED output
signal in the c166_user_io.mdl uses a custom storage class, which uses a
single bit in a bitfield variable. See “Tutorial: Using the Example Driver

Preparing Input and Output Signals to the Device Driver Functions
Functions” on page 3-10 for details about the different ways the model
variables are defined and referenced to interface the hand-coded driver
functions and the automatically generated code.

By defining your own custom storage classes, you have complete control over
the data structures that are used for any signal in the model. See the custom
storage class documentation in the Real-Time Workshop Embedded Coder
documentation for more details.
3-5

3 Integrating Your Own Device Drivers

3-6
Calling the Device Driver Functions from c166_main.c
You should check the option to include I/O driver function hooks. When
Real-Time Workshop generates code for this model, it includes some extra calls
to user-supplied I/O device driver functions:

1 Select Simulation –> Configuration Parameters.

The Configuration Parameters dialog appears.

2 Select the Real-Time Workshop pane.

3 On the Real Time Workshop pane, select the C166 Options tab, as shown
in the example below.

4 Select the check box option for including I/O driver function hooks.

These functions are

user_io_initialize — called following model initialization

base_rate_model_inputs — read model inputs, called at the base sample rate

base_rate_model_outputs — write model outputs, called at the base sample
rate

Calling the Device Driver Functions from c166_main.c
sub_rate_i_model_inputs — read model inputs, called at the start of subrate
i, where i=1, 2, ….

sub_rate_i_model_outputs — write model outputs, called at the start of
sub-rate i, where i=1, 2, ….

If you are using the automatically generated c166_main.c, then these function
names are fixed.

For an example implementation of these functions, open the model
c166_user_io and follow the link to open the I/O driver source files. These are
described in “Tutorial: Using the Example Driver Functions” on page 3-10.
3-7

3 Integrating Your Own Device Drivers

3-8
Adding the I/O Driver Source to the List of Files to Build
You must tell the Real-Time Windows build process to compile and link the I/O
driver source files that you have written. To do this, you must add some extra
arguments to the make_rtw command in the Real-Time Workshop tab of the
Simulation Parameters dialog:

1 Select the General tab.

2 Alter the Make command in the edit box.

You must specify the names of the additional source files, e.g.

make_rtw USER_SRCS = file1.c file2.c USER_INCLUDES =
-Iincludedir1 -Iincludedir2

Adding the I/O Driver Source to the List of Files to Build
If you have several files to add it may be convenient to put the command inside
a new file, as in the example file:

make_rtw_user.m:

and replace the make_rtw command with make_rtw_user.

You are now ready to build your model and run it in real time.

You can examine an example of this custom make command in the example
model c166_user_io. See the instructions in “Tutorial: Using the Example
Driver Functions” on page 3-10. Step 8 shows you how to specify the location of
your own hand-coded drivers.
3-9

3 Integrating Your Own Device Drivers

3-1
Tutorial: Using the Example Driver Functions
The example model c166_user_io demonstrates how to integrate user-defined
device driver code. In this tutorial you will generate code from the controller
subsystem, which will automatically download and run on the target.

The model c166_user_io illustrates three alternative methods for using global
variables to interface the hand-written driver functions with the Real-Time
Workshop automatically generated code. The three different methods are
illustrated by these signals:

• input_adc0

• output_PWM0

• output_led_D3

For input_adc0, the variable is defined in the hand-code and referenced in the
Real-Time Workshop code.

For output_PWM0 the variable is defined in the Real-Time Workshop code and
referenced in the hand code.

For output_led_D3 a more sophisticated approach is used, involving custom
storage classes. In this case the variable is again defined in the Real-Time
Workshop code and referenced by the hand code; the difference is that the
variable is defined and referenced as a bitfield using C166® microcontroller
bit-addressable memory:
0

Tutorial: Using the Example Driver Functions
1 Open the model c166_user_io.mdl.
3-11

3 Integrating Your Own Device Drivers

3-1
2 Open the controller subsystem by double-clicking and select the signal
input_adc0.

3 Select the menu item Edit –> Signal Properties.

The Signal Properties dialog appears.
2

Tutorial: Using the Example Driver Functions
Click the Real-Time Workshop tab and observe that the RTW storage
class is ImportedExtern. When you generate code for this model, Real-Time
Workshop will use the specified variable name input_adc0 and will create
an extern declaration in the model header file. Since the Real-Time
Workshop storage class is ImportedExtern, this variable must be defined in
the hand-written driver code. When you open the file user_io.c in the next
step, you will find the line uint16_T input_adc0 that provides this
definition.

4 Double-click the link in the top level model Open the i/o driver source files.

Two source files open in the MATLAB editor, user_io.h and user_io.c.
3-13

3 Integrating Your Own Device Drivers

3-1
5 Click the user_io.h tab, as shown above. Here you can see “extern
uint16_T input_adc0” under the heading “Declare variables that are
imported by the model”. Also look at the #include directive in user_io.c.
The extern declaration and incorporating the header file into the build
makes it possible for the device driver functions to read or write this variable
that is defined in the Real-Time Workshop generated code.

6 In the controller subsystem, select Simulation –> Configuration
Parameters. The Configuration Parameters dialog opens.
4

Tutorial: Using the Example Driver Functions
7 Select the Real-Time Workshop pane, and on the General tab look at the
Make command:

make_rtw_user

This command instructs Real-Time Workshop to compile and link the
hand-coded I/O driver source files specified in the make file in the build
process.

8 Look at the make file to see how these are specified. At the command line
type:

edit make_rtw_user
3-15

3 Integrating Your Own Device Drivers

3-1
Observe the lines specifying the path to the hand-coded I/O driver source
files to be compiled and linked. This is where you would specify the location
of your own hand-coded drivers. For this tutorial do not make changes in the
make file. Close the editor and return to the Configuration Parameters
dialog.
6

Tutorial: Using the Example Driver Functions
9 In the Real-Time Workshop tab, select the C166 Options tab (use the
buttons top right to scroll through the tabs). Observe the selected option
Include i/o driver function hooks.

This instructs Real-Time Workshop to include extra calls to the
user-supplied I/O device driver functions when code is generated for this
model.

10 Select the Interface tab. Observe the option Floating-point numbers is
not selected.

If your model does not use floating point, you should make sure this option
is not checked to use integer code only. Using integer code only will result in
smaller code size and faster real-time execution. It also speeds up the build
process because libraries that are only used by floating-point applications
are not included.

Explore the user_io.c file. This example file is intended to show you some
hand-coded input/output driver functions and how they can be integrated
with Embedded Target for Infineon C166® Microcontrollers.

You can see sections for initializing these input/output drivers: ADC, digital
i/o, and Pulse Width Modulation (PWM).
3-17

3 Integrating Your Own Device Drivers

3-1
11 Close the Signal Properties dialog and Configuration Parameters dialog
if they are still open.

Prior to generating code, you can run the model in closed-loop simulation;
just click start simulation () in the toolbar. You can open the Scope block
to see the model output. If you use this model as a basis for integrating your
own device driver code, this closed-loop simulation allows you to validate the
correct behavior of your control algorithm before running it in real time.

12 Generate code by right-clicking on the controller subsystem and selecting
Real-Time Workshop –> Build Subsystem.

13 Click Build in the Build code for Subsystem: Controller dialog which
appears. Watch the messages as the process proceeds; code is generated,
downloads, and runs on the target.

If you are using a Phytec phyCORE module with HD200 development board,
the digital output is connected to the LED D3. You can see successful
execution of the code when the LED blinks.
8

4

Custom Storage Class for
C166® Microcontroller
Bit-Addressable Memory

This section contains the following topics:

Specifying C166® Microcontroller
Bit-Addressable Memory (p. 4-2)

How to use Embedded Target for Infineon C166®
Microcontrollers to take advantage of C166®
microcontroller bit-addressable memory. This can
significantly reduce code size and increase execution
speed.

Using the Bitfield Example Model
(p. 4-3)

This is a step-by-step guide to the example model
c166_bitfields.mdl. This model is configured to launch
the debugger at the end of the build. Included is a
comparison with another custom storage class variable in
c166_user_io.mdl

4 Custom Storage Class for C166® Microcontroller Bit-Addressable Memory

4-2
Specifying C166® Microcontroller Bit-Addressable Memory
Embedded Target for Infineon C166® Microcontrollers allows you to take
advantage of C166® microcontroller bit-addressable memory. The example
model c166_bitfields.mdl demonstrates this. By using bit-addressable
memory, the compiler is able to use special assembler instructions that
significantly reduce code size and increase execution speed.

At the Simulink level, this is done by using the custom storage class
SimulinkC166.Signal. To specify that a signal in the model should use
bit-addressable memory, you must perform the following steps:

1 Ensure that the signal has the Simulink data type 'boolean'.

2 Attach a label to the signal, either using Edit –> Signal Properties, or by
double-clicking on the signal and typing in the name directly; this label will
be used as the bitfield variable name in the generated code.

3 Create a new Simulink data object of type SimulinkC166.Signal with the
same name as the signal label. See the file c166bitfielddata.m for an
example.

4 You can select Tools –> Model Explorer and click the base workspace to
inspect all the Simulink data objects that are available to the model.

5 Build the model.

The example model c166_bitfields.mdl is configured to start the debugger at
the end of the build. To try this see the next section “Using the Bitfield Example
Model” on page 4-3.

One of the signals in the demo model c166_user_io.mdl also uses the custom
storage class SimulinkC166.Signal to specify that the signal uses
bit-addressable memory. You can compare this with the c166_bitfields
example; it is included in the steps in “Using the Bitfield Example Model” on
page 4-3.

Using the Bitfield Example Model
Using the Bitfield Example Model
You can use the example model c166_bitfields.mdl to see automatic
debugger start at the end of the build.

Follow these steps:

1 Open c166_bitfields.mdl.

2 Double-click Generate code and launch debugger.

Code is generated and the debugger is started.

3 Select View –> Source –> Source and Disassembly.

The example following shows a sample of the generated code.
4-3

4 Custom Storage Class for C166® Microcontroller Bit-Addressable Memory

4-4
4 You can double-click Open setup file in the model to open the file
c166bitfielddata.m in the MATLAB editor.

This file creates a new Simulink data object using the custom storage class
SimulinkC166.Signal. By using custom storage classes, you can collect a
number of input or output variables together into a C struct, resulting in
more readable code. By defining your own custom storage classes, you have
complete control over the data structures that are used for any signal in the

Using the Bitfield Example Model
model. See the custom storage class documentation in the Real-Time
Workshop Embedded Coder User’s Guide for more details. You can double
click Read general documentation for custom storage classes in the
model to go directly to the relevant Embedded Coder help section.

5 You can double-click Inspect data objects to inspect all the Simulink data
objects that are available to the model.

Here you can see the SimulinkC166.Signal data object and you can click on
each object to inspect the properties.

6 One of the signals in the demo model c166_user_io also uses the custom
storage class SimulinkC166.Signal to specify that the signal uses
bit-addressable memory. Open c166_user_io.mdl.

7 Double-click Open custom storage class data file.

The file c166useriodata.m opens in the MATLAB editor.
4-5

4 Custom Storage Class for C166® Microcontroller Bit-Addressable Memory

4-6
Compare with c166bitfielddata.m.

For more details on the variables in this model see “Tutorial: Using the
Example Driver Functions” on page 3–10.

5

Execution Profiling

This section contains the following topics:

Overview of Execution Profiling (p. 5-2) The steps involved in performing execution-profiling
analysis on a model.

Real Time Workshop Options for
Execution Profiling (p. 5-4)

How to configure options for execution profiling.

Multitasking Demo Model (p. 5-8) Step-by-step-instructions for running the multitasking
demo and interpreting the execution profiling results.

5 Execution Profiling

5-2
Overview of Execution Profiling
Embedded Target for Infineon C166® Microcontrollers provides a set of
utilities for recording, uploading, and analyzing execution profile data for
timer-based tasks and asynchronous Interrupt Service Routines (ISRs). With
these utilities, you can

• Generate a graphical display that shows when timer-based tasks and
interrupt service routines are activated, preempted, resumed, and
completed.

• Generate a report with information on

- Maximum number of overruns for each timer-based task since model
execution began

- Maximum turnaround time for each timer-based task since model
execution began

- Analysis of profiling data for timer-based tasks and asynchronous
interrupts over a period of time

To perform execution-profiling analysis on a model, you must perform the
following steps:

1 Place a copy of the appropriate execution profiling block in your model

- Execution Profiling via ASCO if using a serial connection

- Execution Profiling via CAN A if using CAN with a C166 processor

- Execution Profiling via TwinCAN A if using CAN with an XC16x processor
variant

2 Select the Execution profiling option under Real-Time Workshop options
in the Configuration Parameters dialog. See “Real Time Workshop
Options for Execution Profiling” on page 5–4

3 Connect the target processor to your host PC (with a serial or CAN cable).

4 Build, download, and run the model.

5 Initiate execution profiling by running the command profile_c166 or
profile_mpc555.

Overview of Execution Profiling
Two forms of execution profiling are provided:

1 The worst-case values for task turnaround times and number of task
overruns since model execution began are updated whenever a previous
worst-case value is exceeded.

2 A snapshot of task and ISR activity may be recorded over a period of time;
the length of this period depends on how much memory is available to log
the data.

Definitions
Task turnaround time is the elapsed time between start and finish of a task.
If the task is not pre-empted then the task turnaround time is equal to the task
execution time.

Task execution time is that part of the time between task start and finish
when the task is actually running and not pre-empted by another task. Note
that the task execution time cannot be measured directly, but is inferred from
the task start and finish time and the intervening periods during which it was
pre-empted by another task. Note that, in performing these calculations, no
account is taken of processor time consumed by the scheduler while switching
tasks: this means that, in cases where pre-emption has occurred, the reported
task execution times will overestimate the true values.

Task overruns occur when a timer task does not complete before that same
task is next scheduled to run. Depending on how the real-time scheduler is
configured, a task overrun may be handled as a real-time failure. Alternatively,
a small number of concurrent task overruns may be allowed in order to
accommodate cases where a task occasionally takes longer than normal to
complete.

The Execution Profiling Blocks
See the block reference sections:

• “C166 Execution Profiling via ASCO” on page 6-10

• “C166 Execution Profiling via CAN A” on page 6-12.

• “C166 Execution Profiling via TwinCAN A” on page 6-15
5-3

5 Execution Profiling

5-4
Real Time Workshop Options for Execution Profiling

You can see these options on the C166 Options tab of the Real-Time
Workshop tab in the Configuration Parameters dialog.

Execution Profiling
If this option is selected, then the generated code for the model will be
“instrumented” with function calls at the beginning and end of each task or ISR
to be profiled. These function calls read a timer (on C166 a free running timer
is selected from the options in the C166 Resource Configuration) and log this
reading along with a task identifier.

When code for the model is generated, these functions will update data on the
worst-case turnaround time for each timer-based task as well as the worst-case
number of concurrent task overruns, whenever a previous worst-case value is
exceeded. Additionally, when a trigger is provided, data will be logged over a
period of time to record all task start and finish times. The trigger signal can
be supplied, for example, by the block C166 Execution Profiling via CAN A.

Number of Logged Data Points:
When a snapshot of task and ISR activity is logged, this data is stored in
memory that is statically allocated at build time. Each data point requires 8
bytes on MPC555 or 4 bytes on C166. The larger the number of data points to
be stored, the more RAM that must be reserved for this purpose. At the end of

Real Time Workshop Options for Execution Profiling
a logging run, the data must be uploaded to the host computer for analysis; this
is typically achieved by using the one of the C166 execution profiling blocks —
via ASCO, CAN A, or TwinCAN A. See “C166 Execution Profiling via ASCO”
on page 6-10, “C166 Execution Profiling via CAN A” on page 6-12, and “C166
Execution Profiling via TwinCAN A” on page 6-15.
5-5

5 Execution Profiling

5-6
Real-Time Workshop Overrun Options
These Real-Time Workshop options configure the allowable number of task
overruns. You can see these options on the C166 Options tab of the Real-Time
Workshop pane in the Model Explorer.

You can use the options Maximum number of concurrent base-rate
overruns and Maximum number of concurrent sub-rate overruns to
configure the behavior of the scheduler when any of the timer based tasks do
not complete within their allowed sample time. It is useful to allow task
overruns in the case where a task may occasionally take longer than usual to
complete (e.g. if extra processing is required when a special event occurs); if the
task overrun is only occasional then it is possible for the scheduler to 'catch up'
after the extra processing has been completed.

If the maximum number of concurrent overruns for any task is exceeded, this
is deemed to be a failure and the real-time application is stopped. This in turn
will result in a watchdog timer time-out (provided the watchdog timer is
enabled) and the processor will be reset.

As an example, if the base rate is 1 ms and the maximum number of concurrent
base-rate overruns is set to 5 then it is possible for the base rate task to run for
almost 6 ms before failure occurs. Once the overrun has occurred, it is
necessary for subsequent executions of the base rate to complete in less than 1
ms in order that the lost time is recovered.

Real Time Workshop Options for Execution Profiling
The occurrence of base-rate overruns does not affect the numerical behavior of
the algorithm (although reading/writing external devices will of course be
delayed).

If sub-rate overruns are allowed then the transfer of data between different
rates (via rate-transition blocks) in the model may be affected; this causes the
numerical behavior in real-time to differ from the behavior in simulation. To
see an illustration of this effect try running the demo model
c166_multitasking, described in the next section. To disallow sub-rate
overruns and ensure that this effect does not occur, you should set Maximum
number of concurrent sub-rate overruns to zero.
5-7

5 Execution Profiling

5-8
Multitasking Demo Model
The demo model c166_multitasking.mdl illustrates both execution profiling
and the preemptive multitasking scheduler with configurable overrun
handling.

The model is multirate, having tasks running at 1ms, 4ms, and 16ms. It is
configured to use the preemptive multitasking scheduler.

A special feature of this model is that each of the tasks is designed to perform
an increasing number of calculations so as to increase the processor loading
until that task reaches a target turnaround time. The reason for this special
behavior is to ensure that task overruns will occur in order to demonstrate the
behavior of the model in this situation.

Each of the blocks in the model, labelled Load base rate, Load sub-rate 1,
Load sub-rate 2 performs calculations, the result of which should always be
1 both in simulation and in real-time. Any other result is a failure and should
never occur.

The blocks Test Rate Interaction are designed to test whether data is
transferred between tasks in a deterministic manner. In simulation, the output
of each of these blocks will always be zero, indicating that there is no drift
between tasks running at different rates. When running in real time, under
most circumstances, the output will also be zero; in this case the real-time
behavior is deterministic and exactly matches the results in simulation. Even
if task preemption and base-rate overruns occur, the output of these blocks will
be zero so that the real-time behavior faithfully reproduces the results in
simulation. The circumstances under which drift will occur is if sub-rate
overruns occur during execution in real time; if this behavior is not desired, you
should disallow sub-rate overruns by setting the maximum allowed number of
sub-rate overruns to zero in the C166 Options tab of the Real-Time Workshop
pane in the Model Explorer (see “Real-Time Workshop Overrun Options” on
page 5–6).

You can double-click the block provided in the model to switch between
profiling over serial or CAN connections.

Multitasking Demo Model
Running the Multitasking Demo

1 Open the model by typing at the command line

c166_multitasking.mdl

If viewing in the Help browser, you can click the link to open the model.

2 Make sure the target is connected to the host PC via serial or CAN cable.If
using CAN, be sure to use CAN channel 0 (not 1) on the PC.

3 To build and run the model, select the model window, and then press
Ctrl+B.

Watch the messages in the command window as code is generated, then the
CrossView debugger starts, connects to the target, and downloads the code.

4 In the CrossView window, click Run in the toolbar to start the application
running on the target.

It can be useful to run a monitor program such as btest32 to verify that the
model is running — for example you will see messages appearing on the
CAN bus and you can see that you have connected the correct CAN channel.

5 At the command line, type

profile_c166

You will see messages in the command window as profile_c166 runs, first
testing a channel and then obtaining the execution profiling data. The
messages should look something like the following example using CAN:

Testing channel 3:
CAN channel 3 (CanAc2Pci 1) OK.

Sent CAN message with identifier 0x1FFFFF00 to request upload of
execution profiling data.

Waiting to receive CAN message, identifier 0x1FFFFF01, containing
execution profiling data ...

Received first CAN message with execution profiling data.
5-9

5 Execution Profiling

5-1
Uploading data, please wait ...

When the data has been obtained you will see the Help browser and a figure
window appear, displaying the HTML report and the task execution profile.

6 Scroll to view the HTML report on task timings and use the controls to zoom
in on the MATLAB graphic to examine the details of the task overruns.

Interpreting the MATLAB Graphic
Dark shaded areas show the region where a task is preempted.

Light shaded areas show the region where a task is preempted by a higher
priority task or ISR.

The Generated HTML Report
See “Definitions” on page 5–3 for the terms task turnaround time, task
execution time, and task overruns.

All times are in seconds. The timer resolution is 4e-007 second and the
measurement range is 0.026214 second.

The report contains the following information:

• Worst case task turnaround times

- Maximum task turnaround time for each task since model execution
started. Note that the maximum task turnaround time that can be
measured is limited by the timer measurement range.

• Maximum number of overruns for each task

- Maximum number of task overruns since model execution started

• Analysis of recorded profiling data

- Analysis of task turnaround times and task execution times based on
recorded data over a period of 0.18139 second
0

6

Block Reference

This section contains the following topics:

The Embedded Target for Infineon
C166® Microcontrollers Block Library
(p. 6-2)

Overview of the block libraries provided by the Embedded
Target for Infineon C166® Microcontrollers.

Blocks Organized by Library (p. 6-3) Block summaries and links to the block reference
documentation, grouped by block library.

Blocks — Alphabetical List (p. 6-9) Block summaries and links to the block reference
documentation, in alphabetical order.

6 Block Reference

6-2
The Embedded Target for Infineon C166® Microcontrollers
Block Library

The Embedded Target for Infineon C166® Microcontrollers provides one block
library, containing four sublibraries. The C166 Driver Library structure is as
follows:

• Asynchronous/Synchronous Serial Interface Sublibrary

• CAN Interface Sublibrary

• Execution Profiling Sublibrary

• TwinCAN Interface Sublibrary

The following sections provide complete information on each block in the
Embedded Target for Infineon C166® Microcontrollers block libraries, in a
structured format. Refer to these pages when you need details about a specific
block. Click Help on the Block Parameters dialog for the block, or access the
block reference page through Help.

Using Block Reference Pages
Block reference pages are listed in alphabetical order by the block name. Each
entry contains the following information:

• Purpose — describes why you use the block or function.

• Library — identifies the block library where you find the block.

• Description — describes what the block does.

• Dialog Box — shows the block parameters dialog and describes the
parameters and options contained in the dialog. Each parameter or option
appears with the appropriate choices and effects.

• Examples — optional section that provides demonstration models to
highlight block features.

In addition, block reference pages provide pictures of the Simulink model icon
for the blocks.

Blocks Organized by Library
Blocks Organized by Library
The blocks in the Embedded Target for Infineon C166® Microcontrollers are
organized into sublibraries that support different functions. The tables below
reflect that organization:

• “C166 Drivers Library” on page 6-4

• “Asynchronous/Synchronous Serial Interface Sublibrary” on page 6-5

• “CAN Interface Sublibrary” on page 6-5

• “Execution Profiling Sublibrary” on page 6-6

• “TwinCAN Interface Sublibrary” on page 6-7
6-3

6 Block Reference

6-4
C166 Drivers Library

Note To automatically generate code from a ‘main’ model using the
Embedded Target for Infineon C166® Microcontrollers real-time target, you
must include a C166 Resource Configuration block in the model.

The C166 Resource Configuration block is only required if you are generating
‘main’ automatically. It is not required if you are using your own user-supplied
main. The Resource Configuration block provides information required for
generating timer interrupt code. If you are using the automatically generated
‘main’ but do not include a Resource Configuration block in your model, the
code will simply execute as fast as possible. That is, it will not be synchronized
to real time. This behavior may be desirable if you are running code on the
debugger/hardware simulator.

Note When using device driver blocks from the Embedded Target for
Infineon C166® Microcontrollers libraries in conjunction with the C166
Resource Configuration block, do not disable or break library links on the
driver blocks. If library links are disabled or broken, the C166 Resource
Configuration block will operate incorrectly. See “C166 Resource
Configuration” on page 6-16 for further information.

Top Level Library

Block Name Purpose

C166 Resource Configuration Support driver configuration for
C166® microcontrollers

Blocks Organized by Library
Asynchronous/Synchronous Serial Interface Sublibrary

Block Name Purpose

Serial Receive Configure C166® microcontroller
for serial receive

Serial Transmit Configure C166® microcontroller
for serial transmit

CAN Interface Sublibrary

Block Name Purpose

CAN Bus Status Output the Bus Off or Error
Warning state of a CAN module

CAN Calibration Protocol (C166) Implement the CAN Calibration
Protocol (CCP) standard

CAN Receive Receive CAN messages from the
CAN module on the Infineon® C166
microprocessor

CAN Reset Reset a CAN module

CAN Transmit Transmit CAN messages via a CAN
module on the Infineon© C166
6-5

6 Block Reference

6-6
You can also use the CAN message blocks that are part of the CAN Blockset.
See the CAN Blockset Reference for the following blocks:

CAN Message Filter Dispatch message processing based
on message ID

CAN Message Packing Map Simulink signals to CAN
messages

CAN Message Unpacking Inspect and unpack the individual
fields in a CAN message

Execution Profiling Sublibrary

Block Name Purpose

C166 Execution Profiling via ASCO Provide a serial interface to the
execution profiling engine

C166 Execution Profiling via CAN
A

Provide a CAN interface to the
execution profiling engine via CAN
channel A

C166 Execution Profiling via
TwinCAN A

Provide a CAN interface to the
execution profiling engine via
TwinCAN channel A, for XC16x
variants of the Infineon C166®
microprocessor

Blocks Organized by Library
TwinCAN Interface Sublibrary

Block Name Purpose

CAN Calibration Protocol (C166,
TwinCAN)

Implement the CAN Calibration
Protocol (CCP) standard for XC16x
variants of the Infineon C166®
microprocessor.

TwinCAN Bus Status Output the Bus Off or Error
Warning state of a CAN node on
XC16x variants of the Infineon
C166® microprocessor.

TwinCAN Receive Receive CAN messages via the
TwinCAN module on XC16x
variants of the Infineon C166®
microprocessor.

TwinCAN Reset Reset a CAN node on XC16x
variants of the Infineon C166®
microprocessor

TwinCAN Transmit Transmit CAN messages from the
TwinCAN module on XC16x
variants of the Infineon C166®
microprocessor.
6-7

6 Block Reference

6-8
Configuration Class Blocks
Each sublibrary of the Embedded Target for Infineon C166® Microcontrollers
library contains a configuration class block that has an icon similar to the one
shown in this picture.

Note Configuration class blocks exist only to provide information to other
blocks. Do not copy these objects into a model under any circumstances.

Blocks — Alphabetical List

6-9

Blocks — Alphabetical List 6

This section contains function reference pages listed alphabetically.

C166 Execution Profiling via ASCO
6C166 Execution Profiling via ASCOPurpose Provide a serial interface to the execution profiling engine

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ Execution Profiling

Description The C166 Execution Profiling via ASCO block provides a CAN interface to the
execution profiling engine. On receipt of a start command message, logging of
execution profile data is commenced. On completion of a logging run, the
recorded data is automatically returned via the serial interface (ASCO). See
also the MATLAB command profile_c166.

profile_c166(connection) collects and displays execution profiling data
from a C166 target microcontroller that is running a suitably configured
application generated by Embedded Target for Infineon C166®
Microcontrollers. The connection may be set to 'serial' in order to collect data
via a serial connection between the target and the host computer.

The data collected is unpacked and then displayed in a summary HTML report
and as a MATLAB graphic.

profdata = profile_c166(connection)

returns the execution profiling data in the format documented by
exprofile_unpack.

To configure a model for use with execution profiling, you must perform the
following steps:

1 Check the appropriate option in the Target Specific Options tab of the
Real-Time Workshop Options dialog.

2 Make sure the model includes a C166 Execution Profiling block that
provides an interface between the target-side profiling engine, and the
host-side computer from which this command is run.

For more information see Chapter 5, “Execution Profiling” which includes
instructions for the example demo c166_multitasking.mdl.
6-10

C166 Execution Profiling via ASCO
Dialog Box

Sample time
The sample time of the block. The faster the sample time of the block, the
faster data will be uploaded at the end of the execution profiling run. You
may want to run this block slower than the fastest rate in the system
because the execution profiling itself imposes some loading on the
processor. You can minimize this extra loading by not running it at the
fastest rate.
6-11

C166 Execution Profiling via CAN A
6C166 Execution Profiling via CAN APurpose Provide a CAN interface to the execution profiling engine via CAN channel A

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ Execution Profiling

Description The C166 Execution Profiling via CAN A block provides a CAN interface to the
execution profiling engine. On receipt of a start command message, logging of
execution profile data begins. On completion of a logging run, the recorded data
is automatically returned via CAN. You must specify the message identifiers
for the start command and the returned data. These identifiers must be
compatible with the values used by the host-side part of the execution profiling
utility. See also the MATLAB command profile_c166.

profile_c166(connection) collects and displays execution profiling data
from a C166 target microcontroller that is running a suitably configured
application generated by Embedded Target for Infineon C166®
Microcontrollers. The connection may be set to 'CAN' in order to collect data via
a CAN connection between the target and the host computer. To use the CAN
connection, you must have suitable CAN hardware installed on the host
computer. This function will test for availability of CanCardX 1 or CanAc2Pci1
and defaults to a bit rate of 500K bits per second. If you need to use a different
configuration, you should make a copy of this file and change the configuration
data as required. The data collected is unpacked then displayed in a summary
HTML report and as a MATLAB graphic.

profdata = profile_c166(connection)

returns the execution profiling data in the format documented by
exprofile_unpack.

To configure a model for use with execution profiling, you must perform the
following steps:

1 Check the appropriate option in the Target Specific Options tab of the
Real-Time Workshop Options dialog.

2 Make sure the model includes a C166 Execution Profiling block that
provides an interface between the target-side profiling engine, and the
host-side computer from which this command is run.
6-12

C166 Execution Profiling via CAN A
For more information see Chapter 5, “Execution Profiling” which includes
instructions for the example demo c166_multitasking.mdl.

Dialog Box

Start command CAN message identifier
Set the identifier of the message to start logging execution profiling data.
You should use the default unless you have modified profile_c166. This
identifier must be compatible with the values used by the host-side part of
the execution profiling utility (profile_c166).

The utility profile_c166 provides a mechanism for initiating an execution
profiling run and for uploading the recorded data to the host machine. To
perform this procedure using a CAN connection between host and target,
profile_c166 first sends a CAN message that is a command to start an
execution profiling run. The CAN identifier for this message must be
specified as the same value on the target as on the host. The host-side
values are hard-coded in profile_c166. If you are using an un-modified
version of the host side utility, you should use the default value for this
6-13

C166 Execution Profiling via CAN A
CAN message identifier. These are visible to help you avoid using the same
identifier for other tasks.

Returned data CAN message identifier
Set the message identifier for the returned data. As with the message
identifier for the start command, the value specified here must be the same
as the hard-coded value in profile_c166.

Sample time
The sample time of the block. The faster the sample time of the block, the
faster data will be uploaded at the end of the execution profiling run. You
may want to run this block slower than the fastest rate in the system
because the execution profiling itself imposes some loading on the
processor. You can minimize this extra loading by not running it at the
fastest rate.
6-14

C166 Execution Profiling via TwinCAN A
6C166 Execution Profiling via TwinCAN APurpose Provide a CAN interface to the execution profiling engine via TwinCAN
channel A, for XC16x variants of the Infineon C166® microprocessor

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ Execution Profiling

Description The C166 Execution Profiling via TwinCAN A block is for the TwinCAN
interface and performs the same functions as the C166 Execution Profiling via
CAN A block. For block parameter descriptions, see “C166 Execution Profiling
via CAN A” on page 6-12.
6-15

C166 Resource Configuration
6C166 Resource Configuration

Purpose Support device configuration for the C166® microcontroller

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library

Description The C166 Resource Configuration block differs in function and behavior from
conventional blocks. Therefore, we refer to this block as the C166 Resource
Configuration object.

The C166 Resource Configuration object is required to provide information
that is used to configure driver blocks and timer interrupts.

• You must include this block in your model if

- You are using any of the driver blocks supplied with Embedded Target for
Infineon C166® Microcontrollers

- You are taking advantage of the automatically generated scheduler that is
driven by timer interrupts.

• You do not need to include the Resource Configuration object in your model
if you are not using any of the C166 driver library blocks, and if you do not
require the automatically generated scheduler (for example, if you are
supplying your own main.c).

The C166 Resource Configuration object maintains configuration settings that
apply to the C166® microcontroller. Although the C166 Resource
Configuration object resembles a conventional block in appearance, it is not
connected to other blocks via input or output ports. This is because the purpose
of the C166 Resource Configuration object is to provide information to other
blocks in the model. C166 device driver blocks register their presence with the
C166 Resource Configuration object when they are added to a model or
subsystem; they can then query the C166 Resource Configuration object for
required information.

To install a C166 Resource Configuration object in a model or subsystem, open
the C166 Drivers library and select the C166 Resource Configuration icon.
Then drag and drop it into your model or subsystem, like a conventional block.

Having installed a C166 Resource Configuration object into your model or
subsystem, you can then select and edit configuration settings in the C166
6-16

C166 Resource Configuration
Resource Configuration window. See “Using the C166 Resource
Configuration Window” on page 6-18 for further information.

Note If your model or subsystem requires a C166 Resource Configuration
object (see above), you should place it at the top level system for which you are
going to generate code. If your whole model is going to run on the target
processor, put the C166 Resource Configuration object at the root level of the
model. If you are going to generate code from separate subsystems (to run
specific subsystems on the target), place a C166 Resource Configuration object
at the top level of each subsystem. You should not have more than one C166
Resource Configuration object in the same branch of the model hierarchy.
Errors will result if these conditions are not met.

Types of Configurations
A configuration is a collection of parameter values affecting the operation of
one or more device driver blocks in the Embedded Target for Infineon C166®
Microcontrollers library. The C166 Resource Configuration object currently
supports the following types of configurations:

• C166 Drivers Configuration: C166® microcontroller clocks and other
CPU-related parameters.

• Asynchronous/Synchronous serial Interface Configuration: parameters
related to the serial driver blocks and Simulink external mode.

Dialog Box The C166 Drivers Configuration always appears in the active configuration
pane. If there are also blocks in your model from the
Asynchronous/Synchronous Serial Interface (ASC0) sublibrary, you will also
see the configuration for these, as seen in the next example. If you add an ASC0
block to a model without any ASC0 blocks, the appropriate configuration is
created and activated in the C166 Resource Configuration block. Similarly if
you add CAN blocks to a model a CAN configuration is created.

You can see an example like this by opening the demo model
c166_serial_transmit and double-clicking on the C166 Resource
Configuration block.
6-17

C166 Resource Configuration
A configuration remains active until all blocks associated with it are removed
from the model or subsystem. At that point, the configuration is in an inactive
state. Inactive configurations are not shown in the C166 Resource
Configuration window. You can reactivate a configuration by simply adding
an appropriate block into the model.

Using the C166 Resource Configuration Window
To open the C166 Resource Configuration window, install a C166 Resource
Configuration object in your model or subsystem, and double-click on the C166
Resource Configuration icon. The C166 Resource Configuration window then
opens.

This example shows the C166 Resource Configuration window for a model
that has active configurations for the C166® microcontroller (c166drivers)
and for the Asynchronous/Synchronous Serial Interface (ASC0) blocks, as
found in the demo c166_serial_transmit.
6-18

C166 Resource Configuration
The C166 Resource Configuration window consists of the following elements:

• Active Configurations panel: This panel displays a list of currently active
configurations. To edit a configuration, click on its entry in the list. The
parameters for the selected configuration then appear in the System
Configuration panel.

To link back to the library associated with an active configuration, right-click
on its entry in the list. From the menu that appears, select Go to library.

To see documentation associated with an active configuration, right-click on
its entry in the list. From the menu that appears, select Help.

• System Configuration panel: This panel lets you edit the parameters of the
selected configuration. The parameters of each configuration type are
detailed in “C166 Resource Configuration Window Parameters” on
page 6-19.

Note Click Apply to make your changes take effect.

• Status panel: The Status panel displays error messages that may arise if
resource allocation conflicts are detected in the configuration.

• OK button: Dismisses the window.

C166 Resource
Configuration
Window
Parameters

The following sections describe the parameters for each type of configuration
in the C166 Resource Configuration window. The default parameter settings
are optimal for most purposes. If you want to change the settings, we suggest
you read the sections of the C166 Users Manual referenced below. You can find
this document at the Infineon Web site at the following URL:

http://www.infineon.com/
6-19

C166 Resource Configuration
C166 System Configuration Parameters

External_oscillator_frequency
Depending on your hardware variant, the Real Time Clock (RTC) may be
driven directly by the external oscillator input and it is therefore important
that the external oscillator frequency is set correctly. Otherwise if the RTC
is used to provide any timing services, the behavior will be incorrect. The
default value for external oscillator frequency is 5 MHz. You should check
your hardware manual to establish the correct value for your setup. Note
you can choose the RTC as a System_timer, see below.

Free_running_timer
This parameter allows one of the on-chip timers to be configured for use
with execution profiling. The selected timer is configured to run
indefinitely at a known frequency and is used by the execution profiling
engine to record the times at which tasks start or finish executing. See
Chapter 5, “Execution Profiling” for more details.

System_frequency
You must set the system frequency of your C166® microcontroller
hardware here. Note that the value will depend on your hardware type and
configuration. Should you choose an incorrect value this will cause the
model to be correspondingly fast or slow.
6-20

C166 Resource Configuration
System_timer
You must select which timer to use for generating interrupts to drive the
model update rate. You should select a timer, or timer pair, that you do not
intend to use for any other purpose within your application. We recommend
you choose a pair of timers, e.g., T6, with reload from CAPREL. This will
give the best possible sample time accuracy and there will be no long term
drift caused by higher priority interrupts. If you choose a single timer, e.g.,
T2, or RTC, the timer value will be reloaded within the timer interrupt
service routine. With this approach any delay in servicing the timer
interrupt will be added to the time until the next timer interrupt is
generated.

Timer_interrupt_level and Timer_interrupt_level_group
These two parameters together set the priority of sample time interrupts.
You should choose values such that the sample time interrupts are suitably
prioritized relative to other interrupts used by your application.
6-21

C166 Resource Configuration
Asynchronous/Synchronous Serial Interface Configuration Parameters

Bit_rate_achieved
This read-only field shows the achieved serial interface bit rate. In general
this value differs slightly from the requested bit rate, but is the closest
value that can be achieved by setting allowed values in C166 register S0BG
and bitfield S0BRS of register S0CON.

Bit_rate_ideal
Enter the desired bit rate for serial communications in this field.
Appropriate register settings will be calculated automatically. You can
verify the actual bit rate in the Bit_rate_achieved field.
6-22

C166 Resource Configuration
Loopback_mode_enable
Select this entry to operate the serial interface in loopback mode. This may
be useful for test purposes where the serial interface is required to receive
data that it transmitted itself.

Mode_control
Select the desired combination of word length and parity/no parity. See the
C166® Microcontroller User’s Manual for more details.

Parity_selection
If parity is enabled, you must select odd or even.

Receive_buffer_size
You must select the size of the RAM buffer that will be used by the serial
receive driver. The maximum allowed value is 254.

Receive_interrupt_level and Receive_interrupt_level_group
Set the receive interrupt priority here. Note that the drivers used by
Embedded Target for Infineon C166® Microcontrollers only allow interrupt
levels 14 and 15 to be used. The reason for this is that the drivers use the
PEC (peripheral event controller), which provides very fast interrupt
response but is restricted to levels 14 and 15.

S0CON
This is a noneditable field that shows the value of the serial interface
register S0CON and how it varies as dialog settings are changed.

Stop_bits
You must select either 1 or 2 stop bits.

Transmit_buffer_size
See Receive_buffer_size.

Transmit_interrupt_level and Transmit_interrupt_level_group
See Receive parameters above.
6-23

C166 Resource Configuration
CAN Configuration Parameters

The parameters listed below are the same for CAN modules A and B.

C166_Transmit_Buffer_Number
This parameter is read-only; all transmitted messages are sent from buffer
number 14.

CAN_Int_Level_Group and CAN_Interrupt_Level
These two parameters together set the priority of sample time interrupts.
You should choose values such that the sample time interrupts are suitably
prioritized relative to other interrupts used by your application. Note that
CAN module interrupts must be set to a higher priority than timer
interrupts. Use the Validate Configuration button to make sure you do
not select an interrupt level that is already in use.
6-24

C166 Resource Configuration
Masks You can use these mask configuration parameters to choose to ignore
certain bits. In general, a CAN message is received only if its identifier is
an exact match with the identifier specified in one of the receive buffers.
You can use mask parameters to indicate that some of the bits in the
received message identifier are “don't care.”

Buffer_15_Mask
This mask applies to buffer 15 only. Each bit in the mask that is set to zero
causes the corresponding bit in the received message identifier to be
ignored when comparing it to the message identifer that buffer 15 is
configured to receive.

Global_Mask_Extended
This mask applies to any of buffers 1 to 14 that are configured to receive
messages with an extended identifier. Each bit in the mask that is set to
zero causes the corresponding bit in the received message identifier to be
ignored when comparing it to the message identifer that this buffer is
configured to receive.

Global_Mask_Standard
This mask applies to any of buffers 1 to 14 that are configured to receive
messages with an standard identifier. Each bit in the mask that is set to
zero causes the corresponding bit in the received message identifier to be
ignored when comparing it to the message identifier that this buffer is
configured to receive.

Module_Enabled
If the module is enabled then initialization code for that CAN module is
generated. Use this setting to prevent generation of driver code for a CAN
module that is not required, or not available on your hardware variant.
6-25

C166 Resource Configuration
Timing CAN_Bit _Rate
Enter the desired bit rate. The default bit rate is 500000.

Number_Of_Quanta
The number of CAN module clock ticks per message bit.

Resynchronization_Jump_Width
The maximum number of clock ticks that the CAN device can
resynchronize over when it detects that it is losing message
synchronization.

Sample_Point
The point in the message where the CAN module samples the value of the
message bit.

Transmit_Queue_Length
Length (number of messages) of the transmit queue. The transmit queue
holds messages that are waiting to be transmitted. An increase in
performance can be achieved by reducing the queue length. However, if the
queue's length is too small it may become full, causing messages to be lost.
6-26

CAN Bus Status
6CAN Bus StatusPurpose Output the Bus Off or Error Warning state of a CAN module

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ CAN Interface

Description The CAN Bus Status block provides an indicator of the state of the selected
CAN module. The block has a single output that may be set to indicate either
the Bus Off or Error Warning state of the module.

Dialog Box

Module
Select one of CAN modules A or B.

Status type
Choose Bus Off or Error Warning.

Sample time
The sample time of this block.
6-27

CAN Calibration Protocol (C166)
6CAN Calibration Protocol (C166)Purpose Implement the CAN Calibration Protocol (CCP) standard

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ CAN Interface

Description The CAN Calibration Protocol (C166) block provides an implementation of a
subset of the CAN Calibration Protocol (CCP) Version 2.1. CCP is a protocol for
communicating between the target processor and the host machine over CAN.
In particular, a calibration tool (see “Compatibility with Calibration Packages”
on page 6-32) running on the host can communicate with the target, allowing
remote signal monitoring and parameter tuning.

This block processes a Command Receive Object (CRO) and outputs the
resulting Data Transmission Object (DTO) and Data Acquisition (DAQ)
messages.

Note To use the CAN Calibration Protocol block, you need Stateflow and
Stateflow Coder

For more information on CCP, refer to ASAM Standards: ASAM MCD: MCD
1a on the Association for Standardization of Automation and Measuring
Systems (ASAM) Web site at http://www.asam.de.

Using the DAQ Output
The DAQ output is the output for any CCP Data Acquisition (DAQ) lists that
have been set up. You can use the ASAP2 file generation feature of the RT
target to

• Set up signals to be transmitted using CCP DAQ lists.

• Assign signals in your model to a CCP event channel automatically (see
“Generating ASAP2 Files” on page 2-17).

Once these signals are set up, event channels then periodically fire events that
trigger the transmission of DAQ data to the host. When this occurs, CAN
messages with the appropriate CCP / DAQ data appear on the DAQ output,
along with an associated function call trigger.
6-28

CAN Calibration Protocol (C166)
The calibration tool (see “Compatibility with Calibration Packages” on
page 6-32) must use CCP commands to assign an event channel and data to the
available DAQ lists, and interpret the synchronous response.

Using DAQ lists for signal monitoring has the following advantages over the
polling method:

• There is no need for the host to poll for the data. Network traffic is halved.

• The data is transmitted at the correct update rate for the signal. Therefore
there is no unnecessary network traffic generated.

• Data is guaranteed to be consistent. The transmission takes place after the
signals have been updated, so there is no risk of interruptions while
sampling the signal.

Note The Embedded Target for Infineon C166 Microcontrollers does not
currently support event channel prescalers.
6-29

CAN Calibration Protocol (C166)
Dialog Box

CAN station address (16 bit integer)
The station address of the target. The station address is interpreted as a
uint16. It is used to distinguish between different targets. By assigning
unique station addresses to targets sharing the same CAN bus, it is
possible for a single host to communicate with multiple targets.

CAN module
Choose CAN modules A or B.

CAN message identifier (CRO)
Specify the CAN message identifier for the Command Receive Object
(CRO) message you want to process.
6-30

CAN Calibration Protocol (C166)
CAN message type (CRO)
The incoming message type. Select either Standard(11-bit identifier)
or Extended(29-bit identifier).

CAN message identifier (DTO/DAQ)
The message identifier is the CAN message ID used for DTO (Data
Transmission Object) and DAQ (Data Acquisition) message outputs. It is
also used for transmitting messages to the host during the
software-induced CAN download (soft boot). See “Extended Functionality”
on page 6-33.

CAN message type (DTO/DAQ)
The message type to be transmitted by the DTO and DAQ outputs. Select
either Standard(11-bit identifier) or Extended(29-bit identifier).

Total number of Object Descriptor Tables (ODTs)
The default number of Object Descriptor Tables (ODTs) is 8. These ODTs
are shared equally between all available DAQ lists. You can choose a value
between 0 and 254, depending on how many signals you wish to log
simultaneously. You must make sure you allocate at least 1 ODT per DAQ
list, or your build will fail. The calibration tool will give an error message
if there are too few ODTs for the number of signals you specify for
monitoring. Be aware that too many ODTs can make the sample time
overrun. If you choose more than the maximum number of ODTs (254), the
build will fail.

A single ODT uses 56 bytes of memory. Using all 254 ODTs would require
over 14 KB of memory, a large proportion of the available memory on the
target. To conserve memory on the target the default number is low,
allowing DAQ list signal monitoring with reduced memory overhead and
processing power.

As an example, if you have five different rates in a model, and you are using
three rates for DAQ, then this will create three DAQ lists and you must
make sure you have at least three ODTs. ODTs are shared equally among
DAQ lists, and therefore you will end up with one ODT per DAQ list. With
less than three ODTs you get zero ODTs per DAQ list and the behavior is
undefined.
6-31

CAN Calibration Protocol (C166)
Taking this example further, say you have three DAQ lists with one ODT
each, and start trying to monitor signals in a calibration tool. If you try to
assign too many signals to a particular DAQ list (that is, signals requiring
more space than seven bytes (one ODT) in this case), then the calibration
tool will report this as an error.

CRO sample time
The sample time for CRO messages.

Supported CCP Commands
The following CCP commands are supported by the CAN Calibration Protocol
(C166) block:

• CONNECT
• DISCONNECT
• DNLOAD
• DNLOAD_6
• EXCHANGE_ID
• GET_CCP_VERSION
• GET_DAQ_SIZE
• GET_S_STATUS
• SET_DAQ_PTR
• SET_MTA
• SET_S_STATUS
• SHORT_UP
• START_STOP
• START_STOP_ALL
• TEST
• UPLOAD
• WRITE_DAQ

Compatibility with Calibration Packages
The above commands support

• Synchronous signal monitoring via calibration packages that use DAQ lists

• Asynchronous signal monitoring via calibration packages that poll the
target

• Asynchronous parameter tuning via CCP memory programming
6-32

CAN Calibration Protocol (C166)
This CCP implementation has been tested successfully with the
Vector-Informatik CANape calibration package running in both DAQ list and
polling mode, and with the Accurate Technologies Inc. Vision calibration
package running in DAQ list mode. (Note that Accurate Technologies Inc.
Vision does not support the polling mechanism for signal monitoring.)

Extended Functionality
The CAN Calibration Protocol (C166) block also supports the PROGRAM_PREPARE
command. This command is an extension of CCP that allows the automatic
download of new code into the target memory. This removes the requirement
for a manual reset of the processor. On receipt of the PROGRAM_PREPARE
command, the target will reboot and begin the CAN download process. This lets
you download new application code to RAM or flash memory, or download new
boot code to flash memory.

Note The CAN message identifier of the CCP messages incoming to the
target (Command Receive Object (CRO) messages) are set in the mask of the
CAN Receive block. The message identifiers for those messages outgoing from
the target (Data Transmission Object (DTO) or DAQ) are specified in the block
mask for the CAN Calibration Protocol (C166) block. These message
identifiers are used as the CAN identifiers for the download process after a
PROGRAM_PREPARE reboot. The type of CAN message used for this
PROGRAM_PREPARE download process is always Extended (29-bit
identifier).
6-33

CAN Calibration Protocol (C166, TwinCAN)
6CAN Calibration Protocol (C166, TwinCAN)Purpose Implement the CAN Calibration Protocol (CCP) standard for XC16x variants
of the Infineon C166® microprocessor

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ CAN Interface

Description The CAN Calibration Protocol (C166, TwinCAN) block is for the TwinCAN
interface and performs the same functions as the CAN Calibration Protocol
(C166) block. For block parameter descriptions, see “CAN Calibration Protocol
(C166)” on page 6-28.
6-34

CAN Receive
6CAN ReceivePurpose Receive CAN messages from the CAN module on the Infineon® C166
microprocessor

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ CAN Interface

Description The CAN Receive block receives CAN messages from a CAN module. The CAN
Receive block can reserve one of the buffers on the CAN module. Alternatively,
you can instruct the CAN Receive block to select a hardware buffer
automatically from the available buffers. The CAN Receive block has two
outputs: a data output and a function call trigger output. The CAN Receive
block polls its message buffer at a rate determined by the block's sample time.
When the CAN Receive block detects that a message has arrived, the function
call trigger is activated. You should use a function call subsystem, activated by
the trigger, to decode the message available at the CAN Receive block data
output.

Dialog Box
6-35

CAN Receive
CAN module
Select one of CAN modules A or B. The CAN modules can receive messages
independently.

CAN message identifier
The identifier of the message you want to receive. Note that if you have set
the CAN configuration parameters in your model to mask out certain bits
(e.g., the message identifier field) you may receive messages with
identifiers other than the identifier specified here. See “CAN Configuration
Parameters” on page 6-24)

Buffer selection
Choose Automatic or Manual. When the automatic option is selected, the
CAN Receive block automatically selects a receive buffer from the available
buffers. We recommend that you use this automatic buffer selection, unless
you want to use buffer 15 with its individually programmable mask.

Buffer number [1..15]
This field is enabled if the Buffer selection is Manual. Buffer number
specifies the identifier of the receive buffer for this block. We recommend
that you select Automatic buffer selection instead of manually specifying
the buffer, unless you want to use buffer 15 with its individually
programmable mask.

CAN message type
The type of message you want to receive. Select either Standard(11-bit
identifier) or Extended(29-bit identifier).

Sample time
Determines the rate at which to sample the buffer to see if a new message
has arrived.

Note The CAN Receive block sample time must be set to a value that is
smaller than the minimum time between CAN messages that will be received
into the corresponding buffer. If more than one message is received into a
buffer during a single sample interval, the older message will be overwritten.
6-36

CAN Reset
6CAN ResetPurpose Reset a CAN module

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ CAN Interface

Description The CAN Reset block reinitializes the CAN module. We recommend that you
place this block in a triggered subsystem, with a sample time of -1 (inherited).

Dialog Box

Module
Select one of CAN modules A or B.

Sample time
The sample time of this block.
6-37

CAN Transmit
6CAN TransmitPurpose Transmit CAN messages via a CAN module on the Infineon© C166

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ CAN Interface

Description The CAN Transmit block transmits a CAN message onto the CAN bus. Two
modes of transmission are available with the CAN Transmit block.

The default mode is to use a priority-based message queue shared by all
transmit blocks operating in this mode; the priority-based message queue
operates in conjunction with CAN buffer 14; when a message is successfully
transmitted from this buffer, an interrupt is generated and the highest priority
message from the queue is loaded into the hardware buffer ready to be
transmitted. This mode has the advantage of allowing several messages with
different identifiers to be transmitted without each message requiring a
dedicated hardware buffer. Note that although messages are taken from the
queue in order of priority, it is possible for a low priority message to be present
in the hardware buffer and higher priority messages cannot then be
transferred from the queue until transmission of the low priority message is
complete.

The second transmit mode is to use a dedicated CAN buffer; in this case,
messages to be transmitted are loaded directly into a CAN buffer that is used
exclusively by the block. No queue is used, which means that in case the
previous message has not been transmitted it will be overwritten by the new
one. This transmit mode does not use interrupts. An advantage of using the
dedicated buffer mode is that there is reduced delay in transmitting high
priority messages, and reduced processor overhead that is otherwise required
for queue management and servicing interrupts.

The third transmit mode is to use a First In First Out (FIFO) queue with
dedicated buffer. In this mode messages are placed in a queue and then
transmitted on a first in, first out basis. This mode is useful if several
messages, possibly with the same CAN identifier must be transmitted in
sequence; this may be a requirement if CAN is being used for data acquisition.

The CAN Transmit block should be connected to CAN Message
Packing/Unpacking blocks. Do not ground the block or leave it unconnected.
6-38

CAN Transmit
Dialog Box

Module
Select one of CAN modules A or B. The CAN modules can receive messages
independently.

Transmit mode
Select one of the three modes described above: queued transmission with
shared buffer, direct transmission with dedicated buffer, or FIFO queue
with dedicated buffer.

Buffer selection
Only for selecting dedicated buffers — only available if you select direct
transmission or FIFO queue transmit modes. Choose either automatic or
manual selection of the hardware buffer number.

Buffer number
This option is only available if the buffer selection is available and set to
manual. You must select a buffer number between 1 and 14. Note if more
than one message is ready to be transmitted, then the one in the lower
buffer number will be sent first. We recommend you select buffer numbers
such that the higher the message priority, the lower the buffer number.

Sample time
Choose -1 to inherit the sample time from the driving blocks. The CAN
Transmit block does not inherit constant sample times and runs at the base
rate of the model if driven by invariant signals.
6-39

Serial Receive
6Serial ReceivePurpose Configure C166® microcontroller for serial receive

Library Embedded Target for Infineon C166® Microcontrollers/ C166 Driver Library/
Asynchronous/Synchronous Serial Interface

Description The Serial Receive block receives bytes over the C166® microcontroller
Synchronous/Asynchronous Serial Interface ASC0. It requests either a fixed
number of bytes to be received, or by enabling the first input, a variable
number of bytes can be requested each time this block is called.

When the block is called, the requested number of bytes are retrieved from a
FIFO buffer that is internal to the device driver. If this buffer contains fewer
bytes than the number requested, these bytes are pulled from the buffer and
made available at the block output. The number of bytes actually retrieved
from the buffer is made available at the second output. This block will only
retrieve bytes that have already been received and placed in the internal
buffer; it will never wait for additional data to be received.

Whenever bytes are received at the serial interface, a Peripheral Event
Controller (PEC) interrupt is generated to move the byte into the internal
buffer. If there is no more space available in the internal buffer, any additional
data is lost. The PEC interrupts are extremely fast and have minimal effect on
the rest of the application.

To configure the serial interface bit rate, buffer size, PEC interrupt priority
and other parameters see the “Asynchronous/Synchronous Serial Interface
Configuration Parameters” on page 6-22.

Note If your model contains a serial transmit or receive block, it is not
possible to perform on-chip debugging over the same serial interface.
Attempting to use the debugger in this case will cause an error. If you need to
debug an application that includes the serial transmit and receive blocks, you
must run the debugger using a hardware simulator; alternatively, it may be
possible to run your debugger on-chip without using the serial interface, for
example if debugging over CAN is available. See “Starting the Debugger on
Completion of the Build Process” on page 2-12.
6-40

Serial Receive
Block Inputs and Outputs

The input can be enabled so a variable number of bytes can be requested each
time.

The first output pulls bytes from the buffer — either the number requested or
the number available, whichever is the lower. Note that the number requested
is value of input signal if supplied, or width of output signal otherwise.

The second output is the number of bytes actually retrieved from the buffer.

Dialog Box

Show number of bytes read
Enables second output to show actual number of bytes retrieved from the
buffer.

Show length input
Enables inport so you can vary the number of bytes requested per call.

Maximum length of data
Set this as required up to the maximum buffer size. You can set receive and
transmit buffer size (up to a maximum of 256 bytes) within the C166
Resource Configuration object. See “Asynchronous/Synchronous Serial
Interface Configuration Parameters” on page 6-22.
6-41

Serial Receive
Sample time
The time interval between samples. The default is 1. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in the
Simulink documentation for more information.
6-42

Serial Transmit
6Serial TransmitPurpose Configure C166® microcontroller for serial transmit

Library Embedded Target for Infineon C166® Microcontrollers/ C166 Driver Library/
Asynchronous/Synchronous Serial Interface

Description The Serial Transmit block transmits bytes over the C166® microcontroller
Synchronous/Asynchronous Serial Interface ASC0. You can use it either to
transmit a fixed number of bytes, or by enabling the second input, transmit a
variable number of bytes each time this block is called.

When the block is called, the specified number of bytes are placed in a FIFO
buffer that is internal to the device driver. If this buffer is already full, or if the
number of spaces available is too few then not all of the bytes requested will
actually be queued for transmit; in this case the number of bytes actually
transmitted can be determined from block output.

Once bytes are queued for transmit, they will be sent as fast as possible by the
serial interface hardware with no further intervention required by the main
application. Note that after each byte is sent a Peripheral Event Controller
(PEC) interrupt is generated to fetch the next byte from the internal buffer.
The PEC interrupts are extremely fast and have minimal effect on the rest of
the application.

To configure the serial interface bit rate, buffer size, PEC interrupt priority
and other parameters see the “Asynchronous/Synchronous Serial Interface
Configuration Parameters” on page 6-22.

Note If your model contains a serial transmit or receive block, it is not
possible to perform on-chip debugging over the same serial interface.
Attempting to use the debugger in this case will cause an error. If you need to
debug an application that includes the serial transmit and receive blocks, you
must run the debugger using a hardware simulator; alternatively, it may be
possible to run your debugger on-chip without using the serial interface, for
example if debugging over CAN is available. See “Starting the Debugger on
Completion of the Build Process” on page 2-12.
6-43

Serial Transmit
Block Inputs and Outputs

The first input contains the data to be transmitted; this input signal may be
either a vector or scalar with data type uint8.

The optional second input must be a scalar and may be used to control the
number of bytes transmitted. The number of bytes to transmit should not be
greater than the width of the first input signal.

The block output port actual number of bytes output gives the number of
bytes queued for transmit. If there was sufficient space in the buffer, this
number will be equal to the requested number of bytes to transmit.

Dialog Box

Sample time
The time interval between samples. To inherit the sample time, leave this
parameter at the default -1. See Specifying Sample Time in the Simulink
documentation for more information.

Show length input
Enable/disable the number of bytes to send. If not selected, the number of
bytes sent is just the width of the first inport; if selected, the second input
is enabled, which controls the number of bytes to send.

Show number of bytes sent
Enable/disable the number of bytes actually sent. If selected, this value is
available from the first output.
6-44

TwinCAN Bus Status
6TwinCAN Bus StatusPurpose Output the Bus Off or Error Warning state of a CAN node on XC16x variants
of the Infineon C166® microprocessor

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ TwinCAN Interface

Description The TwinCAN Bus Status block is for the TwinCAN interface and performs
the same functions as the CAN Bus Status block. For block parameter
descriptions, see “CAN Bus Status” on page 6-27.
6-45

TwinCAN Receive
6TwinCAN ReceivePurpose Receive CAN messages via the TwinCAN module on XC16x variants of the
Infineon C166® microprocessor

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ TwinCAN Interface

Description The TwinCAN Receive block receives CAN messages from a TwinCAN module.
The TwinCAN Receive automatically reserves one of the buffers on the
TwinCAN module. The TwinCAN Receive block has two outputs: a data output
and a function call trigger output. The TwinCAN Receive block polls its
message buffer at a rate determined by the block's sample time. When the
TwinCAN Receive block detects that a message has arrived, the function call
trigger is activated. You should use a function call subsystem, activated by the
trigger, to decode the message available at the TwinCAN Receive block data
output.

This block has the same parameters as the CAN Receive block, except there is
no option to Automatically select buffer or Buffer number. For block
parameter descriptions, see “CAN Receive” on page 6-35.
6-46

TwinCAN Reset
6TwinCAN ResetPurpose Reset a CAN node on XC16x variants of the Infineon C166® microprocessor

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ TwinCAN Interface

Description The TwinCAN Reset block is for the TwinCAN interface and performs the same
functions as the CAN Reset block. For block parameter descriptions, see “CAN
Reset” on page 6-37.
6-47

TwinCAN Transmit
6TwinCAN TransmitPurpose Transmit CAN messages from the TwinCAN module on XC16x variants of the
Infineon C166® microprocessor

Library Embedded Target for Infineon C166® Microcontrollers/
C166 Driver Library/ TwinCAN Interface

Description The TwinCAN Transmit block transmits a CAN message onto the CAN bus.
Two modes of transmission are available with the CAN Transmit block, as
described below.

The first transmit mode is to use a dedicated CAN buffer; in this case,
messages to be transmitted are loaded directly into a CAN buffer that is used
exclusively by the block. No queue is used, which means that in case the
previous message has not been transmitted it will be overwritten by the new
one. This transmit mode does not use interrupts. An advantage of using the
dedicated buffer mode is that there is minimal delay in transmitting high
priority messages.

The second transmit mode is to use a First In First Out (FIFO) queue with
dedicated buffer. In this mode messages are placed in a queue and then
transmitted on a first in, first out basis. This mode is useful if several
messages, possibly with the same CAN identifier must be transmitted in
sequence; this may be a requirement if CAN is being used for data acquisition.

The TwinCAN Transmit block should be connected to CAN Message
Packing/Unpacking blocks. Do not ground the block or leave it unconnected.
6-48

TwinCAN Transmit
Dialog Box

TwinCAN Node
Select node A or node B.

Transmit mode
Select one of the modes described above: direct transmission with
dedicated buffer, or FIFO queue with dedicated buffer.

Buffer selection
Choose either automatic or manual selection of the hardware buffer
number.

Buffer number [0..31]
This option is only available if the buffer selection is available and set to
manual. You must select a buffer number between 0 and 31. Note if more
than one message is ready to be transmitted, then the one in the lower
buffer number will be sent first. We recommend you select buffer numbers
such that the higher the message priority, the lower the buffer number.
Note that the hardware buffers are shared between node A and node B of
the TwinCAN module.

Sample time
Choose -1 to inherit the sample time from the driving blocks. The
TwinCAN Transmit block does not inherit constant sample times and runs
at the base rate of the model if driven by invariant signals.
6-49

TwinCAN Transmit
6-50

Index
A
ASAP2 files

generating for C166 2-14
ASAP2 files, generating 2-17

B
bit-addressable memory 4-1
blocks

C166 Execution Profiling via ASCO 6-10
C166 Execution Profiling via CAN A 6-12
C166 Execution Profiling via TwinCAN A 6-15
C166 Resource Configuration 6-16
CAN Bus State 6-27
CAN Calibration Protocol (C166) 6-28
CAN Calibration Protocol (C166, TwinCAN)

6-34
CAN Receive 6-35
CAN Reset 6-37
CAN Transmit 6-38
Serial Receive 6-40
Serial Transmit 6-43
TwinCAN Bus Status 6-45
TwinCAN Receive 6-46
TwinCAN Reset 6-47
TwinCAN Transmit 6-48

C
C166 Execution Profiling via ASCO block 6-10
C166 Execution Profiling via CAN A block 6-12
C166 Execution Profiling via TwinCAN A block

6-15
C166 Resource Configuration block 6-16
C166 Target 1-1
CAN Bus State block 6-27
CAN Calibration Protocol (C166) block 6-28
CAN Calibration Protocol (C166, TwinCAN) block
6-34

CAN Calibration Protocol (CCP) 6-28
TwinCAN 6-34

CAN Receive block 6-35
CAN Reset block 6-37
CAN Transmit block 6-38
Configuration Class blocks 6-8
custom storage class 4-1

D
device driver blocks

C166 Resource Configuration 6-16
C166 Serial Receive 6-40
C166 Serial Transmit 6-43

downloading code 2-6

E
Embedded Target for Infineon C166

Microcontrollers
feature summary 1-3

example model
c166_bitfields 4-1
c166_fuelsys 2-14
c166_multitasking 5-1
c166_serial_io 2-10
c166_serial_transmit 2-3
c166_user_io 3-1

execution profiling 5-1

F
fixed-point example 2-14
Index-1

Index

Ind
G
generating code 2-6

I
installation of Embedded Target for Infineon

C166 Microcontrollers 1-7
integrating hand-coded device drivers 3-1

M
multitasking 5-1

R
real-time target

C166 tutorial 2-2

S
Serial Receive block 6-40
Serial Transmit block 6-43

T
TwinCAN Bus Status block 6-45
TwinCAN Receive block 6-46
TwinCAN Reset block 6-47
TwinCAN Transmit block 6-48
ex-2

	Getting Started
	Introduction to the Embedded Target for Infineon C166® Microcontrollers
	Feature Summary

	Prerequisites
	Using This Guide
	Installing the Embedded Target for Infineon C166® Microcontrollers
	Hardware and Software Requirements
	Host Platform
	Hardware Requirements
	Software Requirements
	Switching Between Hardware Variants

	Setting Up and Verifying Your Installation
	Troubleshooting: MiniMon Settings

	Setting Up Your Target Hardware
	Jumper Settings for the phyCore-167 Development Board

	Setting Target Preferences
	Creating a Make Variables Reference File for the Build Process
	Supported Blocks and Data Types

	Tutorial: Simple Example Applications for C166® Microcontrollers
	Introduction
	Tutorial: Creating a New Application
	Before You Begin
	Example Model 1: c166_serial_transmit
	Generating and Downloading Code
	Verifying Code Execution on the Target
	Example 2: c166_serial_io

	Starting the Debugger on Completion of the Build Process
	Fixed-Point Example Model: c166_fuelsys

	Generating ASAP2 Files

	Integrating Your Own Device Drivers
	Integrating Hand-Coded Device Drivers with a Simulink Model
	Preparing Input and Output Signals to the Device Driver Functions
	Calling the Device Driver Functions from c166_main.c
	Adding the I/O Driver Source to the List of Files to Build
	Tutorial: Using the Example Driver Functions

	Custom Storage Class for C166® Microcontroller Bit-Addressable Memory
	Specifying C166® Microcontroller Bit-Addressable Memory
	Using the Bitfield Example Model

	Execution Profiling
	Overview of Execution Profiling
	The Execution Profiling Blocks

	Real Time Workshop Options for Execution Profiling
	Real-Time Workshop Overrun Options

	Multitasking Demo Model
	Running the Multitasking Demo

	Block Reference
	The Embedded Target for Infineon C166® Microcontrollers Block Library
	Using Block Reference Pages

	Blocks Organized by Library
	C166 Drivers Library
	Configuration Class Blocks

	Index

